A347187 Triangle read by rows T(n,k), (n,k>=0), with row/diagonal sums to overpartitions/partitions isomorphic to binomial coefficient sums to 2^n/F(n) (Fibonacci numbers) on Pascal's triangle.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 6, 3, 1, 1, 3, 8, 8, 3, 1, 1, 3, 9, 14, 9, 3, 1, 1, 3, 9, 19, 19, 9, 3, 1, 1, 3, 9, 21, 32, 21, 9, 3, 1, 1, 3, 9, 22, 42, 42, 22, 9, 3, 1, 1, 3, 9, 22, 48, 66, 48, 22, 9, 3, 1, 1, 3, 9, 22, 50, 87, 87, 50, 22, 9, 3, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 3, 6, 3, 1; 1, 3, 8, 8, 3, 1; 1, 3, 9, 14, 9, 3, 1; 1, 3, 9, 19, 19, 9, 3, 1; 1, 3, 9, 21, 32, 21, 9, 3, 1; 1, 3, 9, 22, 42, 42, 22, 9, 3, 1; 1, 3, 9, 22, 48, 66, 48, 22, 9, 3, 1; 1, 3, 9, 22, 50, 87, 87, 50, 22, 9, 3, 1;
Links
- Richard Joseph Boland, Quadratic Polynomial Number Theorem Part 7 - Overpartitions, Moreoverpartitions and More.
- R. da Silva and P. Sakai, New partition function recurrences, J. of Int. Seq. 23 (2020), Article 20.11.8, 16 pp.
- H. Leung, On a generalization of the pentagonal number theorem, Kyungpook Math. J. 58 (2018), 599-613.
- Mircea Mirca, Overpartitions and functions from multiplicative number theory, UPB Scientific Bulletin, Series A: Applied Mathematics and Physics. 83. 97-106.
Crossrefs
Programs
-
Mathematica
(* via a,b mod restricted partition functions *) lim = 20; P[a_,b_,n_] := P[a,b,n] = (F[k_] := ((a+b)k^2 + (a-b)k)/2; P[a, b, 0] = 1; If[n == 0, 1, Sum[(-1)^(k+1) (If[n-F[k] < 0, 0, P[a,b,n-F[k]]] + If[n-F[-k] < 0, 0, P[a,b,n-F[-k]]]), {k,1,n}]]); T[n_,k_] := T[n,k] = (If[k < 0 || k > n, 0, P[n+1, n+2, 2 Binomial[n+1, 2]+k]]); MatrixForm[Table[Table[T[n, k], {k,0,n}], {n,0,lim}]] (* via direct recursion *) lim = 20; T[n_,k_]:=T[n,k]=(T[0,0]=1; If[n==0 && k==0, 1, Sum[(-1)^(j+1)(If[k-Binomial[j, 2] < 0, 0, T[n-j^2, k-Binomial[j, 2]]] + If[k-Binomial[j+1, 2] < 0, 0, T[n-j^2, k-Binomial[j+1, 2]]]), {j, 1, Floor[n^(1/2)]}]]); MatrixForm[Table[Table[T[n,k],{k,0,n}],{n,0,lim}]] (* via a recursion operating on the triangle row sequences *) lim=20;S[0]={1}; Table[S[n]=Sum[(-1)^(j+1)(PadRight[PadLeft[S[n-j^2],n+1-Binomial[j,2]],n+1] + PadRight[PadLeft[S[n-j^2],n+1-Binomial[j+1,2]],n+1]),{j,1,Floor[n^(1/2)]}],{n,1,lim}]; MatrixForm[Table[S[n],{n,0,lim}]] (* p(a,b,n) (and p(b,a,n)) via summing select T(n,k) from the triangle held in memory. *) memlim = 300; S[0] = {1}; Table[ S[n] = Sum[(-1)^(j + 1) (PadRight[ PadLeft[S[n - j^2], n + 1 - Binomial[j, 2]], n + 1] + PadRight[PadLeft[S[n - j^2], n + 1 - Binomial[j + 1, 2]], n + 1]), {j, 1, Floor[n^(1/2)]}], {n, 1, memlim}]; y[a_, b_, x_, n_] := -((b - a)/a) x + n/a; p[a_, b_, n_] := (x = 0; P = 0; If[n == 0, P = 1, While[x <= y[a, b, x, n], If[y[a, b, x, n] == Floor[y[a, b, x, n]], P += If[x > y[a, b, x, n], 0, S[y[a, b, x, n]][[x + 1]]]]; x += 1]]; P)
-
PARI
T(n,k) = if (!n && !k, 1, sum(j=1, sqrtint(n), (-1)^(j+1)*(T(n-j^2, k - binomial(j,2)) + T(n-j^2, k - binomial(j+1,2))))); \\ Michel Marcus, Aug 26 2021
Formula
Via a,b mod restricted partition function:
T(n,k) = p(n+1, n+2, 2*binomial(n+1,2)+k), where
p(a,b,n) is the n-th coefficient of the q-series with g.f. Product_{k>=1|k==0,k==a or k==b (mod (a+b))} 1/(1-q^k), or
p(a,b,n) can be computed using its Euler recurrence given by:
p(a,b,n) = Sum_{k>=1|n-f(a,b,k)>=0} (-1)^(k+1)*(p(a,b,n-f(a,b,k)) + p(a,b,n-f(a,b,-k))), where, if n-f(a,b,-k)<0, p(a,b,n-f(a,b,-k))=0 and
f(a,b,k) = ((a+b)*k^2-(b-a)*k)/2.
Via direct recursion:
T(0,0) = 1;
T(n,k) = Sum_{j=1..floor(sqrt(n))} (-1)^(j+1)*(T(n-j^2, k - binomial(j,2)) + T(n-j^2, k - binomial(j+1,2))).
p(a,b,n) (also p(b,a,n)) via sums of T(n,k) on integral lattice points of y(x) = -((b-a)/a)*x + n/a:
p(a, b, n) = Sum_{ x| 0 <= x <= y(x),
y(x)| y(x) = floor(y(x)) } T(y(x), x).
Comments