A347194 Numbers such that the two adjacent integers are a prime and the square of another prime.
8, 10, 24, 48, 168, 360, 840, 1368, 1848, 2208, 3720, 5040, 7920, 10608, 11448, 16128, 17160, 19320, 29928, 36480, 44520, 49728, 54288, 57120, 66048, 85848, 97968, 113568, 128880, 177240, 196248, 201600, 218088, 241080, 273528, 292680, 323760, 344568, 368448, 426408, 458328, 516960, 528528, 537288, 552048, 564000, 573048, 579120
Offset: 1
Keywords
Examples
8 is a term since 8 lies between 7 (prime) and 9 = 3^2 (square of prime); also tau(8^2-1) = tau(63) = 6. 10 is a term since 10 lies between 9 = 3^2 (square of prime) and 11 (prime); also tau(10^2-1) = tau(99) = 6. 24 is a term since 24 lies between 23 (prime) and 25 = 5^2 (square of prime); also tau(24^2-1) = tau(575) = 6.
Links
- Diophante, A1885, Cachés derrière leurs diviseurs (in French).
- Adrian Dudek, On the Number of Divisors of n^2-1, arXiv:1507.08893 [math.NT], 2015.
- Wikipedia, Catalan's conjecture.
Crossrefs
Programs
-
Maple
with(numtheory): filter := q-> tau(q^2-1) = 6 : select(filter, [$2..580000]);
-
Mathematica
q[n_] := Module[{e1 = FactorInteger[n - 1][[;; , 2]], e2 = FactorInteger[n + 1][[;; , 2]]}, (e1 == {1} && e2 == {2}) || (e1 == {2} && e2 == {1})]; Select[Range[4, 600000], q] (* Amiram Eldar, Sep 23 2021 *)
-
PARI
isok(m) = my(pa, pb); (isprimepower(m-1, &pa)*isprimepower(m+1, &pb) == 2) && (pa != pb); \\ Michel Marcus, Sep 23 2021
-
PARI
upto(n) = { my(res = List()); forprime(i = 3, sqrtint(n-1), if(isprime(i^2 - 2), listput(res, i^2-1); ); if(isprime(i^2 + 2), listput(res, i^2 + 1); ) ); res } \\ David A. Corneth, Sep 23 2021
Comments