cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347194 Numbers such that the two adjacent integers are a prime and the square of another prime.

Original entry on oeis.org

8, 10, 24, 48, 168, 360, 840, 1368, 1848, 2208, 3720, 5040, 7920, 10608, 11448, 16128, 17160, 19320, 29928, 36480, 44520, 49728, 54288, 57120, 66048, 85848, 97968, 113568, 128880, 177240, 196248, 201600, 218088, 241080, 273528, 292680, 323760, 344568, 368448, 426408, 458328, 516960, 528528, 537288, 552048, 564000, 573048, 579120
Offset: 1

Views

Author

Bernard Schott, Sep 23 2021

Keywords

Comments

-> Equivalently, numbers k such that tau(k^2-1) = A347191(k) = 6 (see example; used for Maple code).
Proof: tau(k^2-1) = 6 <==> k^2-1 = p^5 or k^2-1 = p*q^2 with p <> q primes; but k^2-p^5 = 1 is impossible, as a consequence of the Catalan-Mihăilescu theorem; now, (k-1)*(k+1) = p*q^2 ==> (k-1 = p and k+1 = q^2) or (k-1 = q^2 and k+1 = p), because k-1 = q and k+1 = p*q is not possible, otherwise 2 = q*(p-1), which would contradict p <> q.
-> There are two possible configurations with p, q primes: (q^2 < a(n) < p) or (p < a(n) < q^2).
The unique configuration q^2 < a(n) < p is for q = 3, a(2) = 10 and p = 11.
All the other configurations, for n = 1 or n >= 3, are of the form p < a(n) < q^2 with p = A049002(n) and q = A062326(n).
-> Note that there is only one integer such that the two adjacent integers are a prime and the square of that prime: it is 3, which lies between 2 and 2^2; in this case, tau(3^2-1) = 4.

Examples

			8 is a term since 8 lies between 7 (prime) and 9 = 3^2 (square of prime); also tau(8^2-1) = tau(63) = 6.
10 is a term since 10 lies between 9 = 3^2 (square of prime) and 11 (prime); also tau(10^2-1) = tau(99) = 6.
24 is a term since 24 lies between 23 (prime) and 25 = 5^2 (square of prime); also tau(24^2-1) = tau(575) = 6.
		

Crossrefs

Subsequence of A163492 (between prime and a perfect square).

Programs

  • Maple
    with(numtheory):
    filter := q-> tau(q^2-1) = 6 : select(filter, [$2..580000]);
  • Mathematica
    q[n_] := Module[{e1 = FactorInteger[n - 1][[;; , 2]], e2 = FactorInteger[n + 1][[;; , 2]]}, (e1 == {1} && e2 == {2}) || (e1 == {2} && e2 == {1})]; Select[Range[4, 600000], q] (* Amiram Eldar, Sep 23 2021 *)
  • PARI
    isok(m) = my(pa, pb); (isprimepower(m-1, &pa)*isprimepower(m+1, &pb) == 2) && (pa != pb); \\ Michel Marcus, Sep 23 2021
    
  • PARI
    upto(n) = { my(res = List()); forprime(i = 3, sqrtint(n-1), if(isprime(i^2 - 2), listput(res, i^2-1); ); if(isprime(i^2 + 2), listput(res, i^2 + 1); ) ); res } \\ David A. Corneth, Sep 23 2021

Formula

For n >= 3: a(n) = A049002(n) + 1 = a(n) = A146981(n) - 1 = (A049002(n) + A146981(n))/2 = A062326(n)^2 - 1.