cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347239 Sum of A347236 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 13, 4, 4, 0, 26, 0, 8, 8, 55, 0, 34, 0, 26, 16, 4, 0, 26, 4, 8, 68, 52, 0, 0, 0, 133, 8, 4, 16, 223, 0, 8, 16, 26, 0, 0, 0, 26, 68, 12, 0, 110, 16, 74, 8, 52, 0, 68, 8, 52, 16, 4, 0, 4, 0, 12, 136, 463, 16, 0, 0, 26, 24, 0, 0, 247, 0, 8, 148, 52, 16, 0, 0, 110, 421, 4, 0, 8, 8, 8, 8, 26, 0, 8, 32
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Comments

It seems that A030059 gives the positions of all zeros.

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A061019(n) = (((-1)^bigomega(n))*n);
    A347236(n) = sumdiv(n,d,A061019(d)*A003961(n/d));
    v347238 = DirInverseCorrect(vector(up_to,n,A347236(n)));
    A347238(n) = v347238[n];
    A347239(n) = (A347236(n)+A347238(n));

Formula

a(n) = A347236(n) + A347238(n).
a(1) = 2, and for n >1, a(n) = -Sum_{d|n, 1A347236(d) * A347238(n/d).
For all n >= 1, a(A030059(n)) = 0 and a(A030229(n)) = 2*A347236(A030229(n)).
For all n >= 1, a(A001248(n)) = A000290(A001223(n)).