cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347254 Positive integers k such that 10*k+6 is equal to the product of two integers ending with 4 (A347253).

Original entry on oeis.org

1, 5, 9, 13, 17, 19, 21, 25, 29, 33, 37, 41, 45, 47, 49, 53, 57, 61, 65, 69, 73, 75, 77, 81, 85, 89, 93, 97, 101, 103, 105, 109, 113, 115, 117, 121, 125, 129, 131, 133, 137, 141, 145, 149, 153, 157, 159, 161, 165, 169, 173, 177, 181, 183, 185, 187, 189, 193, 197
Offset: 1

Views

Author

Stefano Spezia, Aug 24 2021

Keywords

Comments

Since an integer 10*k + 6 = (10*a + 4)*(10*b + 4) implies that k = 10*a*b + 4*(a + b) + 1, all the terms of this sequence are odd.

Examples

			13 is a term because 4*34 = 136 = 13*10 + 6.
		

Crossrefs

Cf. A016873 (ending with 5), A017341, A324298 (ending with 6), A346951 (ending with 3), A347253.

Programs

  • Mathematica
    a={}; For[n=0, n<=200, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+4]==0 && Mod[(10*n+6)/(10*k+4), 10]==4 && n>Max[a], AppendTo[a, n]]]]; a
  • PARI
    isok(k) =  my(x=10*k+6); sumdiv(x, d, (Mod(d, 10)==4) && Mod(x/d, 10)==4); \\ Michel Marcus, Oct 04 2021
  • Python
    def aupto(lim): return sorted(set(a*b//10 for a in range(4, 10*lim//4+3, 10) for b in range(a, 10*lim//a+3, 10) if a*b//10 <= lim))
    print(aupto(197)) # Michael S. Branicky, Aug 24 2021
    

Formula

a(n) = (A347253(n) - 6)/10.
Lim_{n->infinity} a(n)/a(n-1) = 1.