A347277 Table T(n,k) read by downward antidiagonals: A quotient belonging to a generalization of Euler's theorem.
0, 1, 0, 2, 1, 0, 3, 3, 2, 0, 4, 6, 8, 3, 0, 5, 10, 20, 18, 6, 0, 6, 15, 40, 60, 48, 8, 0, 7, 21, 70, 150, 204, 108, 18, 0, 8, 28, 112, 315, 624, 640, 312, 30, 0, 9, 36, 168, 588, 1554, 2500, 2340, 810, 56, 0, 10, 45, 240, 1008, 3360, 7560, 11160, 8160, 2184, 96, 0
Offset: 1
Examples
T(4,3) = (3^4 - 3^2)/4 = 18. Square array starts: 0, 1, 2, 3, 4, 5, ... 0, 1, 3, 6, 10, 15, ... 0, 2, 8, 20, 40, 70, ... 0, 3, 18, 60, 150, 315, ... 0, 6, 48, 204, 624, 1554, ... 0, 8, 108, 640, 2500, 7560, ...
References
- W. Sierpiński, Elementary Theory of Numbers, Warszawa, 1964.
Crossrefs
Cf. A074650.
Programs
-
Maple
with(numtheory): T:= proc(n, k) (k^n-k^(n-phi(n)))/n end: seq(seq(T(i, 1+d-i), i=1..d), d=1..11);
-
PARI
T(n,k) = (k^n - k^(n - eulerphi(n)))/n; \\ Jinyuan Wang, Aug 28 2021
Formula
T(n,k) = (k^n - k^(n - phi(n)))/n.
Extensions
More terms from Jinyuan Wang, Aug 28 2021
Comments