A347362 Smallest number which can be decomposed into exactly n sums of three distinct positive cubes, but cannot be decomposed into more than one such sum containing the same cube.
36, 1009, 12384, 82278, 746992, 5401404, 15685704, 26936064, 137763072, 251066304, 857520000, 618817536, 3032856000, 2050677000, 6100691904, 36013192704, 16405416000, 96569712000, 48805535232, 131243328000, 611996202000, 201153672000
Offset: 1
Examples
a(1) = 36 = 1^3 + 2^3 + 3^3. a(2) = 1009 = 1^3 + 2^3 + 10^3 = 4^3 + 6^3 + 9^3. a(3) = 12384 = 1^3 + 6^3 + 23^3 = 2^3 + 12^3 + 22^3 = 15^3 + 16^3 + 17^3.
Links
- Gleb Ivanov, Rust program for large terms.
- Gleb Ivanov, Python program.
Crossrefs
Programs
-
Mathematica
Monitor[Do[k=1;While[Length@Union@Flatten[p=PowersRepresentations[k,3,3]]!=n*3||Length@p!=n||MemberQ[Flatten@p,0],k++];Print@k,{n,10}],k] (* Giorgos Kalogeropoulos, Sep 03 2021 *)
Extensions
a(13)-a(15) from Jon E. Schoenfield, Sep 02 2021
a(16)-a(22) from Gleb Ivanov, Sep 12 2021
Comments