cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347371 Number of isomorphism types of automorphism groups of Riemann surfaces of genus n.

Original entry on oeis.org

19, 37, 44, 64, 59, 86, 65, 154, 119, 118, 98, 206, 99, 176, 139, 346, 117, 290, 136, 368, 187, 193, 171, 621, 184, 276, 306, 483, 187, 404, 189, 1014, 255, 332, 253, 880, 205, 381, 341, 1163, 244, 549, 244, 788, 436, 401, 273
Offset: 2

Views

Author

Eric M. Schmidt, Aug 29 2021

Keywords

Comments

This includes subgroups of the full automorphism group.
Breuer's book erroneously gives a(33) = 1013. (See errata.)

Examples

			The 19 automorphism groups for Riemann surfaces of genus 2 are the trivial group, C2, C3, C4, C2 X C2, C5, C6, S3, Q8, C8, D8, C10, C6 . C2, C2 X C6, D12, QD16, SL_2(3), (C2 X C6) . C2, and GL_2(3). [Breuer, Table 9 on p. 77]
		

References

  • Thomas Breuer, Characters and automorphism groups of compact Riemann surfaces, Cambridge University Press, 2000, p. 91.

Crossrefs