cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347379 Möbius transform of A108951, the primorial inflation of n.

Original entry on oeis.org

1, 1, 5, 2, 29, 5, 209, 4, 30, 29, 2309, 10, 30029, 209, 145, 8, 510509, 30, 9699689, 58, 1045, 2309, 223092869, 20, 870, 30029, 180, 418, 6469693229, 145, 200560490129, 16, 11545, 510509, 6061, 60, 7420738134809, 9699689, 150145, 116, 304250263527209, 1045, 13082761331670029, 4618, 870, 223092869, 614889782588491409
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2021

Keywords

Comments

Multiplicative because A108951 is.

Crossrefs

Programs

  • Mathematica
    prim[p_] := Product[Prime[i], {i, 1, PrimePi[p]}]; f[p_, e_] := (pr = prim[p])^e - pr^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 16 2023 *)
  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A002110(primepi(f[i, 1]))^f[i, 2]) };
    A347379(n) = sumdiv(n,d,moebius(n/d)*A108951(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A108951(d).
a(A000040(n)) = A002110(n) - 1.
From Amiram Eldar, Sep 16 2023: (Start)
Multiplicative with a(p^e) = A034386(p)^e - A034386(p)^(e-1).
Sum_{n>=1} 1/a(n) = Product_{n>=1} (1 + A002110(n)/(A002110(n)-1)^2) = 3.8730356211898760903... . (End)