cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347397 a(n) = Sum_{k=1..n} k^k * floor(n/k^k).

Original entry on oeis.org

1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 32, 33, 34, 35, 40, 41, 42, 43, 48, 49, 50, 78, 83, 84, 85, 86, 91, 92, 93, 94, 99, 100, 101, 102, 107, 108, 109, 110, 115, 116, 117, 118, 123, 124, 125, 126, 131, 132, 160, 161, 166, 167, 168, 169, 174, 175, 176, 177, 182, 183, 184
Offset: 1

Views

Author

Seiichi Manyama, Aug 30 2021

Keywords

Comments

What is the limit_{n->infinity} a(n) / (n*log(n)/LambertW(log(n))) ?. - Vaclav Kotesovec, Aug 30 2021

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^k*Floor[n/k^k], {k, 1, n}], {n, 1, 100}] (* Vaclav Kotesovec, Aug 30 2021 *)
  • PARI
    a(n) = sum(k=1, n, k^k*(n\k^k));

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} k^k * x^(k^k)/(1 - x^(k^k)).