cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347398 Expansion of g.f. Sum_{k>=1} k^k * x^(k^k)/(1 - x^(k^k)).

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 28, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 28, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 28, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 32, 1, 1, 1, 5
Offset: 1

Views

Author

Seiichi Manyama, Aug 30 2021

Keywords

Examples

			1^1 | 108, 2^2 | 108 and 3^3 | 108. So a(108) = 1^1 + 2^2 + 3^3 = 32.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (n%k^k==0)*k^k);

Formula

a(n) = A347397(n) - A347397(n-1) for n > 1.
a(n) = Sum_{k=1..n, k^k | n} k^k.