cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347428 Expansion of g.f. Product_{k>=2} 1/(1-x^phi(k)).

Original entry on oeis.org

1, 1, 4, 4, 14, 14, 40, 40, 106, 106, 254, 254, 582, 582, 1256, 1256, 2620, 2620, 5256, 5256, 10266, 10266, 19482, 19482, 36204, 36204, 65792, 65792, 117496, 117496, 206120, 206120, 356320, 356320, 606912, 606912, 1020848, 1020848, 1695676, 1695676, 2786010
Offset: 0

Views

Author

Michel Marcus, Sep 02 2021

Keywords

Crossrefs

Cf. A000010 (phi), A014197, A051894, A120963 (similar g.f.).

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; nops(invphi(n)) end:
    g:= proc(n) option remember; `if`(n=0, 1, add(
          g(n-j)*add(d*b(d), d=divisors(j)), j=1..n)/n)
        end:
    a:= n-> g(n)-g(n-1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 23 2023
  • Mathematica
    nt = 100; (* number of terms *)
    f[kmax_] := f[kmax] = CoefficientList[Product[1/(1 - x^EulerPhi[k]), {k, 2, kmax}] + O[x]^nt, x]; f[kmax = nt]; f[kmax += nt];
    While[f[kmax] != f[kmax - nt], kmax += nt];
    f[kmax] (* Jean-François Alcover, Nov 29 2023 *)

Formula

From Vaclav Kotesovec, Sep 02 2021: (Start)
For n>0, a(n) = A120963(n) - A120963(n-1).
log(a(n)) ~ sqrt(105*zeta(3)*n)/Pi. (End)

Extensions

Terms a(16) and beyond corrected by Vaclav Kotesovec, Jun 23 2023, following a suggestion from Georg Fischer