A347430 Simple continued fraction expansion of Pi^(3/2)/Gamma(3/4)^2.
3, 1, 2, 2, 2, 1, 8, 1, 2, 1, 2, 9, 8, 6, 56, 5, 38, 1, 2, 1, 5, 1, 5, 1, 2, 10, 3, 10, 741, 1, 5, 3, 3, 1, 5, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 7, 2, 3, 3, 4, 4, 1, 11, 1, 2, 1, 1, 1, 1, 1, 5, 1, 64, 1, 1, 2, 7, 1, 5, 98, 2, 2, 2, 1, 1, 1, 1, 1, 5, 1, 3, 1
Offset: 0
Examples
3+1/(1+1/(2+1/(2+1/(2+...)))).
Links
- M. Parker, What is the area of a Squircle?, Youtube video (2021).
- Eric Weisstein's World of Mathematics, Squircle
Crossrefs
Cf. A175576 for decimal expansion.
Programs
-
Maple
convert(8*GAMMA(5/4)^2/sqrt(Pi), confrac, 84); # Peter Luschny, Sep 02 2021
-
Mathematica
ContinuedFraction[Pi^(3/2)/Gamma[3/4]^2, 84] (* Michael De Vlieger, Sep 01 2021 *)
-
PARI
contfrac(Pi^1.5/gamma(3/4)^2) \\ Michel Marcus, Sep 02 2021
Formula
Equals sqrt(2)*Pi/agm(1,sqrt(2)) (arithmetic-geometric mean).
Equals 8*Gamma(5/4)^2/sqrt(Pi). - Peter Luschny, Sep 02 2021