A347440 Number of factorizations of n with alternating product < 1.
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 4, 0, 1, 1, 2, 0, 3, 0, 3, 1, 1, 1, 3, 0, 1, 1, 4, 0, 3, 0, 2, 2, 1, 0, 6, 0, 2, 1, 2, 0, 4, 1, 4, 1, 1, 0, 6, 0, 1, 2, 3, 1, 3, 0, 2, 1, 3, 0, 8, 0, 1, 2, 2, 1, 3, 0, 6, 1, 1, 0, 6, 1, 1, 1
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 6, 12, 24, 30, 48, 72, 96, 120: 2*3 2*6 3*8 5*6 6*8 8*9 2*48 2*60 3*4 4*6 2*15 2*24 2*36 3*32 3*40 2*12 3*10 3*16 3*24 4*24 4*30 2*2*2*3 4*12 4*18 6*16 5*24 2*2*2*6 6*12 8*12 6*20 2*2*3*4 2*2*2*9 2*2*3*8 8*15 2*2*3*6 2*2*4*6 10*12 2*3*3*4 2*3*4*4 2*2*5*6 2*2*2*12 2*3*4*5 2*2*2*2*2*3 2*2*2*15 2*2*3*10
Links
- PlanetMath, alternating sum
Crossrefs
Positions of 0's are A000430.
Positions of 2's are A054753.
Positions of non-0's are A080257.
Positions of 1's are A332269.
The reciprocal version is A339890.
The equal version (= 1 instead of < 1) is A347438.
Allowing any integer reciprocal alternating product gives A347439.
The complement (>= 1 instead of < 1) is counted by A347456.
A038548 counts possible reverse-alternating products of factorizations.
A046099 counts factorizations with no alternating permutations.
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[facs[n],altprod[#]<1&]],{n,100}]
Comments