A347437 Number of factorizations of n with integer alternating product.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 8, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 6, 1, 2, 2, 6, 1, 1, 1, 2, 1, 1, 1, 7
Offset: 1
Keywords
Examples
The factorizations for n = 4, 16, 36, 48, 54, 64, 108: (4) (16) (36) (48) (54) (64) (108) (2*2) (4*4) (6*6) (2*4*6) (2*3*9) (8*8) (2*6*9) (2*2*4) (2*2*9) (3*4*4) (3*3*6) (2*4*8) (3*6*6) (2*2*2*2) (2*3*6) (2*2*12) (4*4*4) (2*2*27) (3*3*4) (2*2*2*2*3) (2*2*16) (2*3*18) (2*2*3*3) (2*2*4*4) (3*3*12) (2*2*2*2*4) (2*2*3*3*3) (2*2*2*2*2*2)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- PlanetMath, alternating sum
Crossrefs
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
The restriction to powers of 2 is A344607.
The even-length case is A347438, also the case of alternating product 1.
The reciprocal version is A347439.
Allowing any alternating product < 1 gives A347440.
The odd-length case is A347441.
The reverse version is A347442.
Allowing any alternating product >= 1 gives A347456.
The ordered version is A347463.
A001055 counts factorizations.
A046099 counts factorizations with no alternating permutations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[facs[n],IntegerQ@*altprod]],{n,100}]
-
PARI
A347437(n, m=n, ap=1, e=0) = if(1==n, if(e%2, 1==denominator(ap), 1==numerator(ap)), sumdiv(n, d, if((d>1)&&(d<=m), A347437(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Oct 22 2023
Extensions
Data section extended up to a(108) by Antti Karttunen, Oct 22 2023
Comments