A347446 Number of integer partitions of n with integer alternating product.
1, 1, 2, 3, 5, 6, 10, 12, 18, 22, 31, 37, 54, 62, 84, 100, 134, 157, 207, 241, 314, 363, 463, 537, 685, 785, 985, 1138, 1410, 1616, 1996, 2286, 2801, 3201, 3885, 4434, 5363, 6098, 7323, 8329, 9954, 11293, 13430, 15214, 18022, 20383, 24017, 27141, 31893, 35960
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 12 partitions: (1) (2) (3) (4) (5) (6) (7) (11) (21) (22) (41) (33) (61) (111) (31) (221) (42) (322) (211) (311) (51) (331) (1111) (2111) (222) (421) (11111) (411) (511) (2211) (2221) (3111) (4111) (21111) (22111) (111111) (31111) (211111) (1111111)
Crossrefs
Allowing any reverse-alternating product >= 1 gives A344607.
Allowing any reverse-alternating product < 1 gives A344608.
Ranked by A347457.
The even-length case is A347704.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A347461 counts possible alternating products of partitions.
Programs
-
Mathematica
altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[IntegerPartitions[n],IntegerQ[altprod[#]]&]],{n,0,30}]
Comments