A347448 Number of integer partitions of n with alternating product > 1.
0, 0, 1, 2, 3, 5, 8, 12, 17, 25, 35, 49, 66, 90, 120, 161, 209, 275, 355, 460, 585, 750, 946, 1199, 1498, 1881, 2335, 2909, 3583, 4430, 5428, 6666, 8118, 9912, 12013, 14586, 17592, 21252, 25525, 30695, 36711, 43956, 52382, 62469, 74173, 88132, 104303, 123499
Offset: 0
Keywords
Examples
The a(2) = 1 through a(7) = 12 partitions: (2) (3) (4) (5) (6) (7) (21) (31) (32) (42) (43) (211) (41) (51) (52) (311) (222) (61) (2111) (321) (322) (411) (421) (3111) (511) (21111) (2221) (3211) (4111) (31111) (211111)
Crossrefs
The strict case is A000009, except that a(0) = a(1) = 0.
The even-length case is A344608.
Allowing any integer reverse-alternating product gives A347445.
Allowing any integer alternating product gives A347446.
The reverse version is A347449, also the odd-length case.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A347461 counts possible alternating products of partitions.
Programs
-
Maple
a:= n-> (p-> p(n)-p(iquo(n, 2)))(combinat[numbpart]): seq(a(n), n=0..63); # Alois P. Heinz, Oct 04 2021
-
Mathematica
altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[IntegerPartitions[n],altprod[#]>1&]],{n,0,30}]
Comments