A347451 Numbers whose multiset of prime indices has integer reciprocal alternating product.
1, 2, 4, 6, 8, 9, 10, 14, 16, 18, 21, 22, 24, 25, 26, 32, 34, 36, 38, 39, 40, 46, 49, 50, 54, 56, 57, 58, 62, 64, 65, 72, 74, 81, 82, 84, 86, 87, 88, 90, 94, 96, 98, 100, 104, 106, 111, 115, 118, 121, 122, 126, 128, 129, 133, 134, 136, 142, 144, 146, 150, 152
Offset: 1
Keywords
Examples
The terms and their prime indices begin: 1: {} 32: {1,1,1,1,1} 65: {3,6} 2: {1} 34: {1,7} 72: {1,1,1,2,2} 4: {1,1} 36: {1,1,2,2} 74: {1,12} 6: {1,2} 38: {1,8} 81: {2,2,2,2} 8: {1,1,1} 39: {2,6} 82: {1,13} 9: {2,2} 40: {1,1,1,3} 84: {1,1,2,4} 10: {1,3} 46: {1,9} 86: {1,14} 14: {1,4} 49: {4,4} 87: {2,10} 16: {1,1,1,1} 50: {1,3,3} 88: {1,1,1,5} 18: {1,2,2} 54: {1,2,2,2} 90: {1,2,2,3} 21: {2,4} 56: {1,1,1,4} 94: {1,15} 22: {1,5} 57: {2,8} 96: {1,1,1,1,1,2} 24: {1,1,1,2} 58: {1,10} 98: {1,4,4} 25: {3,3} 62: {1,11} 100: {1,1,3,3} 26: {1,6} 64: {1,1,1,1,1,1} 104: {1,1,1,6}
Crossrefs
Allowing any alternating product >= 1 gives A344609.
Factorizations of this type are counted by A347439.
Allowing any alternating product <= 1 gives A347450.
The non-reciprocal version is A347454.
A344606 counts alternating permutations of prime indices.
A347457 ranks partitions with integer alternating product.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Select[Range[100],IntegerQ[1/altprod[primeMS[#]]]&]
Comments