cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A347437 Number of factorizations of n with integer alternating product.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 8, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 6, 1, 2, 2, 6, 1, 1, 1, 2, 1, 1, 1, 7
Offset: 1

Views

Author

Gus Wiseman, Sep 06 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The factorizations for n = 4, 16, 36, 48, 54, 64, 108:
  (4)   (16)      (36)      (48)        (54)    (64)          (108)
  (2*2) (4*4)     (6*6)     (2*4*6)     (2*3*9) (8*8)         (2*6*9)
        (2*2*4)   (2*2*9)   (3*4*4)     (3*3*6) (2*4*8)       (3*6*6)
        (2*2*2*2) (2*3*6)   (2*2*12)            (4*4*4)       (2*2*27)
                  (3*3*4)   (2*2*2*2*3)         (2*2*16)      (2*3*18)
                  (2*2*3*3)                     (2*2*4*4)     (3*3*12)
                                                (2*2*2*2*4)   (2*2*3*3*3)
                                                (2*2*2*2*2*2)
		

Crossrefs

Positions of 1's are A005117, complement A013929.
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
The restriction to powers of 2 is A344607.
The even-length case is A347438, also the case of alternating product 1.
The reciprocal version is A347439.
Allowing any alternating product < 1 gives A347440.
The odd-length case is A347441.
The reverse version is A347442.
The additive version is A347446, ranked by A347457.
Allowing any alternating product >= 1 gives A347456.
The restriction to perfect squares is A347458, reciprocal A347459.
The ordered version is A347463.
A001055 counts factorizations.
A046099 counts factorizations with no alternating permutations.
A071321 gives the alternating sum of prime factors of n (reverse: A071322).
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],IntegerQ@*altprod]],{n,100}]
  • PARI
    A347437(n, m=n, ap=1, e=0) = if(1==n, if(e%2, 1==denominator(ap), 1==numerator(ap)), sumdiv(n, d, if((d>1)&&(d<=m), A347437(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Oct 22 2023

Formula

a(2^n) = A344607(n).
a(n^2) = A347458(n).

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 22 2023

A347439 Number of factorizations of n with integer reciprocal alternating product.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 6, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, 5
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2021

Keywords

Comments

All of these factorizations have an even number of factors, so their reverse-alternating product is also an integer.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the reciprocal alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^i).
The value of a(n) does not depend solely on the prime signature of n. See the example comparing a(144) and a(400). - Antti Karttunen, Jul 28 2024

Examples

			The a(n) factorizations for
n    = 16,       36,       64,           72,       128,          144:
a(n) = 3,        4,        6,            5,        7,            11
--------------------------------------------------------------------------------
       2*8       6*6       8*8           2*36      2*64          2*72
       4*4       2*18      2*32          3*24      4*32          3*48
       2*2*2*2   3*12      4*16          6*12      8*16          4*36
                 2*2*3*3   2*2*2*8       2*2*3*6   2*2*4*8       6*24
                           2*2*4*4       2*3*3*4   2*4*4*4       12*12
                           2*2*2*2*2*2             2*2*2*16      2*2*6*6
                                                   2*2*2*2*2*4   2*3*3*8
                                                                 3*3*4*4
                                                                 2*2*2*18
                                                                 2*2*3*12
                                                                 2*2*2*2*3*3
From _Antti Karttunen_, Jul 28 2024 (Start)
For n=400, there are 12 such factorizations:
  2*200
  4*100
  5*80
  10*40
  20*20
  2*2*2*50
  2*2*5*20
  2*2*10*10
  2*4*5*10
  2*5*5*8
  4*4*5*5
  2*2*2*2*5*5.
Note that 400 = 2^4 * 5^2 has the same prime signature as 144 = 2^4 * 3^2. 400 = 2*4*5*10 is the factorization for which there is no analogous factorization of 144, as 2*3*4*6 doesn't satisfy the condition of having an integer reciprocal alternating product.
(End)
		

Crossrefs

Positions of 0's are A005117 \ {1}.
Positions of non-0's are 1 and A013929.
The restriction to powers of 2 is A027187, reverse A035363.
Positions of 1's are 1 and A082293.
The additive version is A119620, ranked by A347451 and A028982.
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
The non-reciprocal version is A347437.
The reverse version is A347438.
Allowing any alternating product < 1 gives A347440.
The non-reciprocal reverse version is A347442.
Allowing any alternating product >= 1 gives A347456.
The restriction to perfect squares is A347459, non-reciprocal A347458.
A038548 counts possible reverse-alternating products of factorizations.
A046099 counts factorizations with no alternating permutations.
A071321 gives the alternating sum of prime factors (reverse: A071322).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347441 counts odd-length factorizations with integer alternating product.
A347460 counts possible alternating products of factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    recaltprod[q_]:=Product[q[[i]]^(-1)^i,{i,Length[q]}];
    Table[Length[Select[facs[n],IntegerQ[recaltprod[#]]&]],{n,100}]
  • PARI
    A347439(n, m=n, ap=1, e=0) = if(1==n, !(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1 && d<=m, A347439(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024
    
  • PARI
    A347439(n, m=0, ap=1, e=1) = if(1==n, 1==denominator(ap), sumdiv(n, d, if(d>1 && d>=m, A347439(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024

Formula

a(2^n) = A027187(n).
a(n^2) = A347459(n).

Extensions

Data section extended up to a(108) by Antti Karttunen, Jul 28 2024

A347442 Number of factorizations of n with integer reverse-alternating product.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 3, 2, 1, 3, 3, 1, 1, 1, 7, 1, 1, 1, 8, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 8, 2, 3, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 3, 11, 1, 1, 1, 3, 1, 1, 1, 11, 1, 1, 3, 3, 1, 1, 1, 8, 5, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 9, 1, 3, 3, 8, 1, 1, 1, 3, 1, 1, 1, 12
Offset: 1

Views

Author

Gus Wiseman, Sep 08 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(n) factorizations for n = 4, 8, 16, 32, 36, 54, 64:
  (4)    (8)      (16)       (32)         (36)       (54)     (64)
  (2*2)  (2*4)    (2*8)      (4*8)        (6*6)      (3*18)   (8*8)
         (2*2*2)  (4*4)      (2*16)       (2*18)     (2*3*9)  (2*32)
                  (2*2*4)    (2*2*8)      (3*12)     (3*3*6)  (4*16)
                  (2*2*2*2)  (2*4*4)      (2*2*9)             (2*4*8)
                             (2*2*2*4)    (2*3*6)             (4*4*4)
                             (2*2*2*2*2)  (3*3*4)             (2*2*16)
                                          (2*2*3*3)           (2*2*2*8)
                                                              (2*2*4*4)
                                                              (2*2*2*2*4)
                                                              (2*2*2*2*2*2)
		

Crossrefs

The restriction to powers of 2 is A000041, reverse A344607.
Positions of 2's are A001248.
Positions of 1's are A005117.
Positions of non-1's are A013929.
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
The non-reverse version is A347437.
The reciprocal version is A347438.
The even-length case is A347439.
Allowing any alternating product < 1 gives A347440.
The odd-length case is A347441, ranked by A347453.
The additive version is A347445, ranked by A347457.
The non-reverse additive version is A347446, ranked by A347454.
Allowing any alternating product >= 1 gives A347456.
The ordered version is A347463.
A038548 counts possible reverse-alternating products of factorizations.
A071321 gives the alternating sum of prime factors (reverse: A071322).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A273013 counts ordered factorizations of n^2 with alternating product 1.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],IntegerQ@*revaltprod]],{n,100}]
  • PARI
    A347442(n, m=n, ap=1, e=0) = if(1==n, 1==denominator(ap), sumdiv(n, d, if((d>1)&&(d<=m), A347442(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Oct 22 2023

Formula

a(2^n) = A000041(n).

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 22 2023

A347446 Number of integer partitions of n with integer alternating product.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 18, 22, 31, 37, 54, 62, 84, 100, 134, 157, 207, 241, 314, 363, 463, 537, 685, 785, 985, 1138, 1410, 1616, 1996, 2286, 2801, 3201, 3885, 4434, 5363, 6098, 7323, 8329, 9954, 11293, 13430, 15214, 18022, 20383, 24017, 27141, 31893, 35960
Offset: 0

Views

Author

Gus Wiseman, Sep 15 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (41)     (33)      (61)
             (111)  (31)    (221)    (42)      (322)
                    (211)   (311)    (51)      (331)
                    (1111)  (2111)   (222)     (421)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (3111)    (4111)
                                     (21111)   (22111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Allowing any reverse-alternating product >= 1 gives A344607.
Allowing any alternating product <= 1 gives A119620, reverse A347443.
Allowing any reverse-alternating product < 1 gives A344608.
The multiplicative version (factorizations) is A347437, reverse A347442.
The odd-length case is A347444, ranked by A347453.
The reverse version is A347445, ranked by A347454.
Allowing any alternating product > 1 gives A347448, reverse A347449.
Ranked by A347457.
The even-length case is A347704.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A347461 counts possible alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],IntegerQ[altprod[#]]&]],{n,0,30}]

A347457 Heinz numbers of integer partitions with integer alternating product.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 78
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also numbers whose multiset of prime indices has integer reverse-alternating product.

Examples

			The prime indices of 525 are {2,3,3,4}, with reverse-alternating product 2, so 525 is in the sequence
The prime indices of 135 are {2,2,2,3}, with reverse-alternating product 3/2, so 135 is not in the sequence.
		

Crossrefs

The reciprocal version is A028982.
Allowing any alternating product > 1 gives A028983, reverse A347465.
Factorizations of this type are counted by A347437.
These partitions are counted by A347446.
The reverse reciprocal version A347451.
The odd-length case is A347453.
The reverse version is A347454.
The complement is A347455.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433 lists numbers whose prime indices are separable, complement A335448.
A347461 counts possible alternating products of partitions, reverse A347462.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],IntegerQ[altprod[Reverse[primeMS[#]]]]&]

A347445 Number of integer partitions of n with integer reverse-alternating product.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 20, 24, 32, 40, 50, 62, 77, 99, 115, 151, 170, 224, 251, 331, 360, 481, 517, 690, 728, 980, 1020, 1379, 1420, 1918, 1962, 2643, 2677, 3630, 3651, 4920, 4926, 6659, 6625, 8931, 8853, 11905, 11781, 15805, 15562, 20872, 20518
Offset: 0

Views

Author

Gus Wiseman, Sep 14 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (11111)  (411)     (421)      (422)
                                     (2211)    (511)      (611)
                                     (21111)   (22111)    (2222)
                                     (111111)  (31111)    (3311)
                                               (1111111)  (22211)
                                                          (41111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

Allowing any reverse-alternating product >= 1 gives A344607.
Allowing any reverse-alternating product < 1 gives A344608.
The multiplicative version is A347442, unreversed A347437.
Allowing any reverse-alternating product <= 1 gives A347443.
Restricting to odd length gives A347444, ranked by A347453.
The unreversed version is A347446, ranked by A347457.
Allowing any reverse-alternating product > 1 gives A347449.
Ranked by A347454.
A000041 counts partitions, with multiplicative version A001055.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A339890 counts factorizations with alternating product > 1, reverse A347705.
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],IntegerQ[revaltprod[#]]&]],{n,0,30}]

A347441 Number of odd-length factorizations of n with integer alternating product.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 5, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 2, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 6, 1, 2, 2, 4, 1, 1, 1, 2, 1, 1, 1, 7
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(n) factorizations for n = 2, 8, 32, 48, 54, 72, 108:
  2   8       32          48          54      72          108
      2*2*2   2*2*8       2*4*6       2*3*9   2*6*6       2*6*9
              2*4*4       3*4*4       3*3*6   3*3*8       3*6*6
              2*2*2*2*2   2*2*12              2*2*18      2*2*27
                          2*2*2*2*3           2*3*12      2*3*18
                                              2*2*2*3*3   3*3*12
                                                          2*2*3*3*3
		

Crossrefs

The restriction to powers of 2 is A027193.
Positions of 1's are A167207 = A005117 \/ A001248.
Allowing any alternating product gives A339890.
Allowing even-length factorizations gives A347437.
The even-length instead of odd-length version is A347438.
The additive version is A347444, ranked by A347453.
A038548 counts possible reverse-alternating products of factorizations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A339846 counts even-length factorizations.
A347439 counts factorizations with integer reciprocal alternating product.
A347440 counts factorizations with alternating product < 1.
A347442 counts factorizations with integer reverse-alternating product.
A347456 counts factorizations with alternating product >= 1.
A347463 counts ordered factorizations with integer alternating product.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,100}]
  • PARI
    A347441(n, m=n, ap=1, e=0) = if(1==n, (e%2)&&1==denominator(ap), sumdiv(n, d, if((d>1)&&(d<=m), A347441(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Oct 22 2023

Formula

a(2^n) = A027193(n).

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 22 2023

A347450 Numbers whose multiset of prime indices has alternating product <= 1.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 10, 14, 15, 16, 18, 21, 22, 24, 25, 26, 32, 33, 34, 35, 36, 38, 39, 40, 46, 49, 50, 51, 54, 55, 56, 57, 58, 60, 62, 64, 65, 69, 72, 74, 77, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 100, 104, 106, 111, 115, 118, 119, 121, 122
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also Heinz numbers integer partitions with reverse-alternating product <= 1, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Also numbers whose multiset of prime indices has alternating sum <= 1.

Examples

			The initial terms and their prime indices:
      1: {}            26: {1,6}           56: {1,1,1,4}
      2: {1}           32: {1,1,1,1,1}     57: {2,8}
      4: {1,1}         33: {2,5}           58: {1,10}
      6: {1,2}         34: {1,7}           60: {1,1,2,3}
      8: {1,1,1}       35: {3,4}           62: {1,11}
      9: {2,2}         36: {1,1,2,2}       64: {1,1,1,1,1,1}
     10: {1,3}         38: {1,8}           65: {3,6}
     14: {1,4}         39: {2,6}           69: {2,9}
     15: {2,3}         40: {1,1,1,3}       72: {1,1,1,2,2}
     16: {1,1,1,1}     46: {1,9}           74: {1,12}
     18: {1,2,2}       49: {4,4}           77: {4,5}
     21: {2,4}         50: {1,3,3}         81: {2,2,2,2}
     22: {1,5}         51: {2,7}           82: {1,13}
     24: {1,1,1,2}     54: {1,2,2,2}       84: {1,1,2,4}
     25: {3,3}         55: {3,5}           85: {3,7}
		

Crossrefs

The additive version (alternating sum <= 0) is A028260.
The reverse version is A028982, counted by A119620.
Allowing any alternating product < 1 gives A119899.
Factorizations of this type are counted by A339846, complement A339890.
Allowing any alternating product >= 1 gives A344609, multiplicative A347456.
Partitions of this type are counted by A347443.
Allowing any integer alternating product gives A347454, reciprocal A347451.
The complement is A347465, reverse A028983, counted by A347448.
A056239 adds up prime indices, row sums of A112798.
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433 lists numbers whose prime indices are separable, complement A335448.
A344606 counts alternating permutations of prime indices.
A347457 lists Heinz numbers of partitions with integer alternating product.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],altprod[primeMS[#]]<=1&]

Formula

Union of A028982 and A119899.
Union of A028260 and A001105.

A347454 Numbers whose multiset of prime indices has integer alternating product.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 31, 32, 36, 37, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 108, 109, 112, 113
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2021

Keywords

Comments

First differs from A265640 in having 42.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also Heinz numbers of partitions with integer reverse-alternating product, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The terms and their prime indices begin:
      1: {}            20: {1,1,3}         47: {15}
      2: {1}           23: {9}             48: {1,1,1,1,2}
      3: {2}           25: {3,3}           49: {4,4}
      4: {1,1}         27: {2,2,2}         50: {1,3,3}
      5: {3}           28: {1,1,4}         52: {1,1,6}
      7: {4}           29: {10}            53: {16}
      8: {1,1,1}       31: {11}            59: {17}
      9: {2,2}         32: {1,1,1,1,1}     61: {18}
     11: {5}           36: {1,1,2,2}       63: {2,2,4}
     12: {1,1,2}       37: {12}            64: {1,1,1,1,1,1}
     13: {6}           41: {13}            67: {19}
     16: {1,1,1,1}     42: {1,2,4}         68: {1,1,7}
     17: {7}           43: {14}            71: {20}
     18: {1,2,2}       44: {1,1,5}         72: {1,1,1,2,2}
     19: {8}           45: {2,2,3}         73: {21}
		

Crossrefs

The even-length case is A000290.
The additive version is A026424.
Allowing any alternating product < 1 gives A119899, strict A028260.
Allowing any alternating product >= 1 gives A344609, multiplicative A347456.
Factorizations of this type are counted by A347437.
These partitions are counted by A347445, reverse A347446.
Allowing any alternating product <= 1 gives A347450.
The reciprocal version is A347451.
The odd-length case is A347453.
The version for reversed prime indices is A347457, complement A347455.
Allowing any alternating product > 1 gives A347465, reverse A028983.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433 lists numbers whose prime indices are separable, complement A335448.
A344606 counts alternating permutations of prime indices.
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],IntegerQ[altprod[primeMS[#]]]&]

A347453 Heinz numbers of odd-length integer partitions with integer alternating (or reverse-alternating) product.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 23, 27, 28, 29, 31, 32, 37, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 67, 68, 71, 72, 73, 75, 76, 78, 79, 80, 83, 89, 92, 97, 98, 99, 101, 103, 107, 108, 109, 112, 113, 114, 116, 117, 124, 125, 127, 128, 130
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also numbers whose multiset of prime indices has odd length and integer alternating product, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The terms and their prime indices begin:
      2: {1}         29: {10}            61: {18}
      3: {2}         31: {11}            63: {2,2,4}
      5: {3}         32: {1,1,1,1,1}     67: {19}
      7: {4}         37: {12}            68: {1,1,7}
      8: {1,1,1}     41: {13}            71: {20}
     11: {5}         42: {1,2,4}         72: {1,1,1,2,2}
     12: {1,1,2}     43: {14}            73: {21}
     13: {6}         44: {1,1,5}         75: {2,3,3}
     17: {7}         45: {2,2,3}         76: {1,1,8}
     18: {1,2,2}     47: {15}            78: {1,2,6}
     19: {8}         48: {1,1,1,1,2}     79: {22}
     20: {1,1,3}     50: {1,3,3}         80: {1,1,1,1,3}
     23: {9}         52: {1,1,6}         83: {23}
     27: {2,2,2}     53: {16}            89: {24}
     28: {1,1,4}     59: {17}            92: {1,1,9}
		

Crossrefs

The reciprocal version is A000290.
Allowing any alternating product <= 1 gives A001105.
Allowing any alternating product gives A026424.
Factorizations of this type are counted by A347441.
These partitions are counted by A347444.
Allowing any length gives A347454.
Allowing any alternating product > 1 gives A347465.
A027193 counts odd-length partitions.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433 lists numbers whose prime indices are separable, complement A335448.
A344606 counts alternating permutations of prime indices.
A347446 counts partitions with integer alternating product.
A347457 ranks partitions with integer alt product, complement A347455.
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],OddQ[PrimeOmega[#]]&&IntegerQ[altprod[primeMS[#]]]&]
Showing 1-10 of 13 results. Next