A347458 Number of factorizations of n^2 with integer alternating product.
1, 2, 2, 4, 2, 6, 2, 8, 4, 6, 2, 17, 2, 6, 6, 15, 2, 17, 2, 16, 6, 6, 2, 41, 4, 6, 8, 16, 2, 31, 2, 27, 6, 6, 6, 56, 2, 6, 6, 39, 2, 31, 2, 17, 17, 6, 2, 90, 4, 17, 6, 17, 2, 41, 6, 39, 6, 6, 2, 105, 2, 6, 17, 48, 6, 31, 2, 17, 6, 31, 2, 148, 2, 6, 17, 17, 6, 32, 2, 86, 15, 6, 2, 107, 6, 6, 6, 40, 2, 109, 6, 17
Offset: 1
Keywords
Examples
The a(2) = 2 through a(8) = 8 factorizations: 4 9 16 25 36 49 64 2*2 3*3 4*4 5*5 6*6 7*7 8*8 2*2*4 2*2*9 2*4*8 2*2*2*2 2*3*6 4*4*4 3*3*4 2*2*16 2*2*3*3 2*2*4*4 2*2*2*2*4 2*2*2*2*2*2
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16415
Crossrefs
The restriction to powers of 2 is A344611.
This is the restriction to perfect squares of A347437.
The nonsquared even-length version is A347438.
The additive version (partitions) is the even bisection of A347446.
The nonsquared ordered version is A347463.
The case of alternating product 1 in the ordered version is A347464.
Allowing any alternating product gives A347466.
A001055 counts factorizations.
A046099 counts factorizations with no alternating permutations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A347457 ranks partitions with integer alternating product.
Cf. A062312, A119620, A330972, A346635, A347440, A347441, A347442, A347445, A347451, A347456, A347704, A347705.
Apparently, A006881 gives the positions of 6's. - Antti Karttunen, Oct 22 2023
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[facs[n^2],IntegerQ[altprod[#]]&]],{n,100}]
-
PARI
A347437(n, m=n, ap=1, e=0) = if(1==n, if(e%2, 1==denominator(ap), 1==numerator(ap)), sumdiv(n, d, if((d>1)&&(d<=m), A347437(n/d, d, ap * d^((-1)^e), 1-e)))); A347458(n) = A347437(n*n); \\ Antti Karttunen, Oct 22 2023
Extensions
Data section extended up to a(92) by Antti Karttunen, Oct 22 2023
Comments