A347464 Number of even-length ordered factorizations of n^2 into factors > 1 with alternating product 1.
1, 1, 1, 2, 1, 5, 1, 6, 2, 5, 1, 26, 1, 5, 5, 20, 1, 26, 1, 26, 5, 5, 1, 134, 2, 5, 6, 26, 1, 73, 1, 70, 5, 5, 5, 230, 1, 5, 5, 134, 1, 73, 1, 26, 26, 5, 1, 670, 2, 26, 5, 26, 1, 134, 5, 134, 5, 5, 1, 686, 1, 5, 26, 252, 5, 73, 1, 26, 5, 73, 1, 1714, 1, 5, 26
Offset: 1
Keywords
Examples
The a(12) = 26 ordered factorizations: (2*2*6*6) (3*2*4*6) (6*2*2*6) (4*2*3*6) (12*12) (2*3*6*4) (3*3*4*4) (6*3*2*4) (4*3*3*4) (2*4*6*3) (3*4*4*3) (6*4*2*3) (4*4*3*3) (2*6*6*2) (3*6*4*2) (6*6*2*2) (4*6*3*2) (2*2*2*2*3*3) (3*2*2*2*2*3) (2*2*2*3*3*2) (3*2*2*3*2*2) (2*2*3*2*2*3) (3*3*2*2*2*2) (2*2*3*3*2*2) (2*3*2*2*3*2) (2*3*3*2*2*2) For example, the ordered factorization 6*3*2*4 = 144 has alternating product 6/3*2/4 = 1, so is counted under a(12).
Crossrefs
The restriction to powers of 2 is A000984.
Positions of 2's are A001248.
The not necessarily even-length version is A273013.
A001055 counts factorizations.
A027187 counts even-length partitions.
A074206 counts ordered factorizations.
A347438 counts factorizations with alternating product 1.
A347457 ranks partitions with integer alternating product.
A347460 counts possible alternating products of factorizations.
A347466 counts factorizations of n^2.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[Join@@Permutations/@facs[n^2],EvenQ[Length[#]]&&altprod[#]==1&]],{n,100}]
-
PARI
A347464aux(n, k=0, t=1) = if(1==n, (0==k)&&(1==t), my(s=0); fordiv(n, d, if((d>1), s += A347464aux(n/d, 1-k, t*(d^((-1)^k))))); (s)); A347464(n) = A347464aux(n^2); \\ Antti Karttunen, Oct 30 2021
Comments