cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347500 Number of dominating sets in the n-Apollonian network.

Original entry on oeis.org

15, 109, 42953, 2960403451017, 1380531364206778111844580887042461529
Offset: 1

Views

Author

Eric W. Weisstein, Sep 04 2021

Keywords

Comments

Term a(6) has 108 decimal digits and a(7) has 323 decimal digits. - Andrew Howroyd, May 29 2025

Crossrefs

Programs

  • Mathematica
    Map[
      Sum[Binomial[3, k] #[[k + 1]] x^k, {k, 0, 3}] &,
      NestList[Function[{e0, e1, e2, e3}, {e0^3 + e1^3 x, e1^2 e0 + e2^2 e1 x, e2 e1^2 + e3 e2^2 x, e2^3 + e3^3 x}] @@ # &, {x, 1 + x, 1 + x, 1 + x}, 4]
    ] /. x -> 1 (* Eric W. Weisstein, Sep 03 2025 *)
  • PARI
    \\ here e0..e3 are for 0..3 outside vertices included in dominating set.
    step(S,x)={my([e0,e1,e2,e3]=S); [e0^3 + e1^3*x, e1^2*e0 + e2^2*e1*x, e2*e1^2 + e3*e2^2*x, e2^3 + e3^3*x]}
    a(n,x=1)={my(S=[x,1+x,1+x,1+x]); for(i=2, n, S=step(S,x)); sum(k=0, 3, binomial(3,k) * S[1+k] * x^k)} \\ Andrew Howroyd, May 29 2025

Extensions

a(4) onwards from Andrew Howroyd, May 29 2025

A302487 Total domination number of the n-Apollonian network.

Original entry on oeis.org

2, 2, 3, 4, 7, 16, 43, 124, 367, 1096, 3283, 9844, 29527, 88576, 265723, 797164, 2391487, 7174456, 21523363, 64570084, 193710247, 581130736, 1743392203, 5230176604, 15690529807, 47071589416, 141214768243, 423644304724, 1270932914167, 3812798742496
Offset: 1

Views

Author

Eric W. Weisstein, Apr 08 2018

Keywords

Crossrefs

Formula

a(n) = (3^(n-3) + 5) / 2 = A291773(n) for n >= 3. - Andrew Howroyd, May 29 2025

Extensions

a(8)-a(9) corrected and a(10) onwards from Andrew Howroyd, May 29 2025
Showing 1-2 of 2 results.