A347486 Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 3.
1, 1, 4, 1, 13, 52, 1, 40, 130, 520, 2080, 1, 121, 1210, 4840, 15730, 62920, 251680, 1, 364, 11011, 33880, 44044, 440440, 1431430, 1761760, 5725720, 22902880, 91611520, 1, 1093, 99463, 925771, 397852, 12035023, 37030840, 120350230, 48140092, 481400920, 1564552990
Offset: 1
Examples
The number of subspace chains 0 < V_1 < V_2 < (F_3)^3 is 52 = T(3, (1, 1, 1)). There are 13 = A022167(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 4 = A022167(2, 1) extensions to a two-dimensional subspace V_2. Triangle begins: k: 1 2 3 4 5 6 7 ---------------------------------- n=1: 1 n=2: 1 4 n=3: 1 13 52 n=4: 1 40 130 520 2080 n=5: 1 121 1210 4840 15730 62920 251680
References
- R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.
Links
- Álvar Ibeas, First 20 rows, flattened
Formula
T(n, (n)) = 1. T(n, L) = A022167(n, e) * T(n - e, L \ {e}), if L is a partition of n and e < n is a part of L.
Comments