A347561 Numbers m such that Conv(b,m) = b has a unique nontrivial solution (b = 0 and b = 1 are considered trivial solutions). Here, Conv(b,m) denotes the limit of b^^t (mod m) as t goes to infinity.
4, 11, 13, 19, 47, 719, 1439, 2879, 4079, 4127, 5807, 6047, 7247, 7727, 9839, 10799, 11279, 13967, 14159, 15647, 21599, 24527, 28319, 28607, 42767, 44687, 45887, 48479, 51599, 51839, 67247, 68639, 72767, 77279, 79967, 81647, 84047, 84719, 89087
Offset: 1
Keywords
Examples
For a(2), we have: Conv(2,11) = 9 Conv(3,11) = 9 Conv(4,11) = 4 Conv(5,11) = 1 Conv(6,11) = 5 Conv(7,11) = 2 Conv(8,11) = 3 Conv(9,11) = 5 Conv(10,11) = 1 Therefore, the only solution is Conv(4,11) = 4.
Links
Programs
-
Mathematica
Conv[b_,m_] := Which[ Mod[b,m]==0,Return[0], Mod[b,m]==1,Return[1], GCD[b,m]==1,Return[PowerMod[b,Conv[b,MultiplicativeOrder[b,m]],m]], True,Return[PowerMod[b,EulerPhi[m]+Conv[b,EulerPhi[m]],m]] ] a[m_] := Count[Table[Conv[b,m]==b,{b,0,m-1}],True] Table[If[a[i]==3,i,## &[]],{i,2,800}]
-
PARI
conv(b, n) = {if (b % n == 0, return (0)); if (b % n == 1, return (1)); if (gcd(b, n)==1, return (lift(Mod(b, n)^conv(b, lift(znorder(Mod(b, n))))))); lift(Mod(b, n)^(eulerphi(n) + conv(b, eulerphi(n))));} isok(m) = sum(b=2, m-1, conv(b, m) == b) == 1; \\ Michel Marcus, Sep 13 2021
Comments