A347599 Irregular table read by rows, T(n, k) is the rank of the k-th Genocchi permutation of {1,...,n}, permutations sorted in lexicographical order. If no Genocchi permutation of {1,...,n} exists, then T(n, 1) = 0 by convention.
1, 0, 5, 0, 67, 91, 92, 0, 1897, 2017, 2018, 2617, 2619, 2737, 2738, 2739, 2740, 3457, 3458, 3459, 3460, 4177, 4178, 4179, 4180, 0, 99241, 99961, 99962, 104281, 104283, 105001, 105002, 105003, 105004, 110041, 110042, 110043, 110044, 115081, 115082, 115083
Offset: 1
Examples
Table starts: [1] 1; [2] 0; [3] 5; [4] 0; [5] 67, 91, 92; [6] 0; [7] 1897, 2017, 2018, 2617, 2619, 2737, 2738, 2739, 2740, 3457, 3458, 3459, 3460, 4177, 4178, 4179, 4180; . The 17 permutations corresponding to the ranks are for n = 7: 1897 -> [3571246]; 2017 -> [3671245]; 2018 -> [3671254]; 2617 -> [4571236]; 2619 -> [4571326]; 2737 -> [4671235]; 2738 -> [4671253]; 2739 -> [4671325]; 2740 -> [4671352]; 3457 -> [5671234]; 3458 -> [5671243]; 3459 -> [5671324]; 3460 -> [5671342]; 4177 -> [6571234]; 4178 -> [6571243]; 4179 -> [6571324]; 4180 -> [6571342]. . 17 / (-510) = -1/30 = Bernoulli(8).
Links
- Zhi-Wei Sun, A novel identity connecting permanents to Bernoulli numbers, MathOverflow 2021-09-07.
Programs
-
Julia
using Combinatorics function GenocchiPermutations(n) f(m) = m >= n ? 1 : m < 0 ? -1 : 0 Mat(n) = [[f(2*j - k) for k in 1:n] for j in 1:n] M = Mat(n); P = permutations(1:n); R = Int64[] S, rank = 0, 1 for p in P m = prod(M[k][p[k]] for k in 1:n) if m != 0 S += m push!(R, rank) end rank += 1 end # println(n, " ", S, " ", S // (2^(n + 2) - 2)) # Bernoulli number return R end for n in 1:11 println(GenocchiPermutations(n)) end
Comments