cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A347601 a(n) is the number of positive Euler permutations of order n.

Original entry on oeis.org

1, 0, 0, 2, 7, 16, 102, 1042, 8109, 63280, 642220, 7500626, 89458803, 1135216800, 15935870034, 241410428162, 3858227881945, 65327424977824, 1176448390679256, 22388999178300514, 447692501190569823, 9395318712874789744, 206713705368363820990, 4755693997171333347506
Offset: 0

Views

Author

Peter Luschny, Sep 10 2021

Keywords

Comments

Let M be the tangent matrix of dimension n X n. The definition of the tangent matrix is given in A346831. An Euler permutation of order n is a permutation sigma of {1,...,n} if P = Product_{k=1..n} M(k, sigma(k)) does not vanish. We say sigma is a positive Euler permutation of order n (or sigma in EP(n)) if P = 1 and a negative Euler permutation of order n (or sigma in EN(n)) if P = -1.
a(n) = card(EP(n)), the number of positive Euler permutations of order n. A table of positive Euler permutations is given in A347766. Related sequences are A347599 (Genocchi permutations) and A347600 (Seidel permutations).

Examples

			Illustrating the decomposition of the rencontres numbers and the Euler numbers:
The third column is the sum of the first two columns and the fourth column is the difference between the first two. The fourth column is the sum of the last two.
[n]  A347601     A347602      A000166       A347598      A122045   A347597
--------------------------------------------------------------------------
[ 0] 1,           0,           1,            1,          1,          [0]
[ 1] 0,           0,           0,            0,          0,          0,
[ 2] 0,           1,           1,           -1,         -1,          [0]
[ 3] 2,           0,           2,            2,          0,          2,
[ 4] 7,           2,           9,            5,          5,          [0]
[ 5] 16,          28,          44,          -12,         0,         -12,
[ 6] 102,         163,         265,         -61,        -61,         [0]
[ 7] 1042,        812,         1854,         230,        0,          230,
[ 8] 8109,        6724,        14833,        1385,       1385,       [0]
[ 9] 63280,       70216,       133496,      -6936,       0,         -6936,
[10] 642220,      692741,      1334961,     -50521,     -50521,      [0].
		

Crossrefs

Cf. A000166, A122045, A346831, A347597, A347598, A347602 (neg. perm.), A347766 (table), A347599, A347600, A346719 (bisection even indices).

Programs

  • Julia
    using Combinatorics
    function TangentMatrix(N)
        M = zeros(Int, N, N)
        H = div(N + 1, 2)
        for n in 1:N - 1
            for k in 0:n - 1
                M[n - k, k + 1] = n < H ? 1 : -1
                M[N - n + k + 1, N - k] = n < N - H ? -1 : 1
            end
        end
    M end
    function EulerPermutations(n, sgn)
        M = TangentMatrix(n)
        S = 0
        for p in permutations(1:n)
            sgn == prod(M[k, p[k]] for k in 1:n) && (S += 1)
        end
    S end
    PositiveEulerPermutations(n) = EulerPermutations(n, 1)
  • Maple
    # Uses function TangentMatrix from A346831.
    EulerPermutations := proc(n, sgn) local M, P, N, s, p, m;
       M := TangentMatrix(n); P := 0; N := 0;
       for p in Iterator:-Permute(n) do
          m := mul(M[k, p(k)], k = 1..n);
          if m =  0 then next fi;
          if m =  1 then P := P + 1 fi;
          if m = -1 then N := N + 1 fi; od;
       if sgn = 'pos' then P else N fi end:
    A347601 := n -> `if`(n = 0, 1, EulerPermutations(n, 'pos')):
    seq(A347601(n), n = 0..8);

Formula

Let |S| denote the cardinality of a set S. Following identities hold for n >= 0:
a(n) + A347602(n) = |EP(n) | + |EN(n) | = A000166(n) (rencontres numbers),
a(2n) - A347602(2n) = |EP(2n)| - |EN(2n)| = A122045(n) (Euler numbers),
a(n) - A347602(n) = |EP(n) | - |EN(n) | = A347598(n).

A347602 a(n) is the number of negative Euler permutations of order n.

Original entry on oeis.org

0, 0, 1, 0, 2, 28, 163, 812, 6724, 70216, 692741, 7183944, 86756038, 1155576132, 16135231015, 239656087572, 3838836369800, 65522667301840, 1178853270354697, 22361732381344592, 447322130002332298, 9399988542176154796, 206783054242756958891, 4754731473884444589756
Offset: 0

Views

Author

Peter Luschny, Sep 10 2021

Keywords

Comments

Let M be the tangent matrix of dimension n X n. The definition of the tangent matrix is given in A346831. An Euler permutation of order n is a permutation sigma of {1,...,n} if P = Product_{k=1..n} M(k, sigma(k)) does not vanish. We say sigma is a positive Euler permutation of order n (or sigma in EP(n)) if P = 1 and a negative Euler permutation of order n (or sigma in EN(n)) if P = -1.
a(n) = card(EN(n)), the number of negative Euler permutations of order n. A table of negative Euler permutations is given in A347767. Related sequences are A347599 (Genocchi permutations) and A347600 (Seidel permutations).

Crossrefs

Cf. A000166, A122045, A346831, A347597, A347598, A347601 (pos. perm.), A347767 (table), A347599, A347600, A346720 (bisection even indices).

Programs

  • Maple
    # Uses function EulerPermutations from A347601.
    A347602 := n -> `if`(n = 0, 0, EulerPermutations(n, 'neg')):
    seq(A347602(n), n = 0..8);

Formula

Let |S| denote the cardinality of a set S. Following identities hold for n >= 0:
A347601(n) + a(n) = |EP(n) | + |EN(n) | = A000166(n) (rencontres numbers),
A347601(2n) - a(2n) = |EP(2n)| - |EN(2n)| = A122045(n) (Euler numbers),
A347601(n) - a(n) = |EP(n) | - |EN(n) | = A347598(n).

A347600 Irregular table read by rows, T(n, k) is the rank of the k-th Seidel permutation of {1,...,n}, permutations sorted in lexicographical order.

Original entry on oeis.org

2, 11, 17, 187, 211, 307, 331, 451, 452, 571, 572, 6937, 7057, 7657, 7777, 8497, 8498, 9217, 9218, 11977, 12097, 12697, 12817, 13537, 13538, 14257, 14258, 17737, 17739, 17857, 17859, 18577, 18578, 18579, 18580, 19297, 19298, 19299, 19300, 22777, 22779, 22897
Offset: 1

Views

Author

Peter Luschny, Sep 08 2021

Keywords

Comments

Let M be the 2n X 2n matrix with M(j, k) = floor((2*j - k - 1) / 2*n). A Seidel permutation of order n is a permutation sigma of {1,...,2n} if Product_{k=1..2n} M(k, sigma(k)) does not vanish.
Let P(n) denote the number of Seidel permutations of order n. We conjecture that P(n) = A005439(n). This conjecture was inspired by the conjecture of Zhi-Wei Sun in A036968. The name 'Seidel permutations' follows a comment of Don Knuth: "The earliest known reference for these numbers (A005439) is Seidel ...."
The related sequence A347599 lists Genocchi permutations.

Examples

			Table starts:
[1] 2;
[2] 11, 17;
[3] 187, 211, 307, 331, 451, 452, 571, 572.
.
The 8 permutations corresponding to the ranks are for n = 3:
187 -> [246135]; 211 -> [256134]; 307 -> [346125]; 331 -> [356124];
451 -> [456123]; 452 -> [456132]; 571 -> [546123]; 572 -> [546132].
		

Crossrefs

Programs

  • Julia
    function SeidelPermutations(n)
        f(m) = m >= 2n ? 1 : m < 0 ? -1 : 0
        Mat(n) = [[f(2*j - k - 1) for k in 1:2n] for j in 1:2n]
        M = Mat(n); P = permutations(1:2n); R = Int64[]
        S, rank = 0, 1
        for p in P
            m = prod(M[k][p[k]] for k in 1:2n)
            if m != 0
                S += m
                push!(R, rank)
            end
            rank += 1
        end
        # println(n, " -> ", (-1)^n*S)
        return R
    end
    for n in 1:5 println(SeidelPermutations(n)) end

A347766 Irregular table read by rows, T(n, k) is the rank of the k-th positive Euler permutation of {1,...,n}, permutations sorted in lexicographical order. If no such permutation exists, then T(n, 0) = 0 by convention.

Original entry on oeis.org

1, 0, 0, 2, 3, 1, 6, 8, 11, 14, 15, 17, 3, 8, 24, 28, 29, 30, 32, 35, 50, 55, 57, 68, 71, 74, 79, 92, 2, 6, 15, 16, 21, 26, 30, 40, 44, 54, 55, 60, 68, 99, 104, 120, 121, 123, 124, 125, 137, 138, 142, 143, 144, 146, 150, 161, 164, 167, 174, 175, 177, 179, 185
Offset: 0

Views

Author

Peter Luschny, Sep 12 2021

Keywords

Comments

Let M be the tangent matrix of dimension n X n. The definition of a tangent matrix is given in A346831. An Euler permutation of order n is a permutation sigma of {1,...,n} if P = Product_{k=1..n} M(k, sigma(k)) does not vanish. We say sigma is a positive Euler permutation of order n if P = 1. See A347601 for further details.
A347767 gives the table of negative Euler permutations. Related sequences are A347599 (Genocchi permutations) and A347600 (Seidel permutations).

Examples

			Table of positive Euler permutations, length of rows is A347601:
[0] 1;
[1] 0;
[2] 0;
[3] 2, 3;
[4] 1, 6, 8, 11, 14, 15, 17;
[5] 3, 8, 24, 28, 29, 30, 32, 35, 50, 55, 57, 68, 71, 74, 79, 92.
.
The 16 permutations corresponding to the ranks are for n = 5:
    3 -> [12435],  8 -> [13254], 24 -> [15432], 28 -> [21453],
   29 -> [21534], 30 -> [21543], 32 -> [23154], 35 -> [23514],
   50 -> [31254], 55 -> [32145], 57 -> [32415], 68 -> [35142],
   71 -> [35412], 74 -> [41253], 79 -> [42135], 92 -> [45132].
		

Crossrefs

Programs

  • Maple
    # Uses function TangentMatrix from A346831.
    EulerPermutationsRank := proc(n, sgn) local M, P, N, s, p, m, rank;
       M := TangentMatrix(n); P := []; N := []; rank := 0;
       for p in Iterator:-Permute(n) do
          rank := rank + 1;
          m := mul(M[k, p(k)], k = 1..n);
          if m =  0 then next fi;
          if m =  1 then P := [op(P), rank] fi;
          if m = -1 then N := [op(N), rank] fi; od;
       if sgn = 'pos' then P else N fi end:
    A347766Row := n -> `if`(n < 3, [[1,0,0][n+1]], EulerPermutationsRank(n, 'pos')):
    for n from 0 to 5 do A347766Row(n) od;

A347767 Irregular table read by rows, T(n, k) is the rank of the k-th negative Euler permutation of {1,...,n}, permutations sorted in lexicographical order. If no such permutation exists, then T(n, 0) = 0 by convention.

Original entry on oeis.org

0, 0, 1, 0, 2, 7, 4, 5, 6, 7, 10, 12, 19, 20, 27, 31, 33, 43, 44, 47, 49, 52, 54, 56, 59, 69, 73, 78, 80, 83, 86, 87, 89, 93, 1, 3, 4, 5, 17, 18, 22, 23, 24, 25, 27, 28, 29, 37, 38, 42, 43, 46, 48, 51, 52, 53, 56, 58, 61, 62, 66, 67, 72, 100, 101, 102, 103, 106
Offset: 0

Views

Author

Peter Luschny, Sep 12 2021

Keywords

Comments

Let M be the tangent matrix of dimension n X n. The definition of a tangent matrix is given in A346831. An Euler permutation of order n is a permutation sigma of {1,...,n} if P = Product_{k=1..n} M(k, sigma(k)) does not vanish. We say sigma is a negative Euler permutation of order n if P = -1. See A347601 for further details.
A347766 gives the table of positive Euler permutations. Related sequences are A347599 (Genocchi permutations) and A347600 (Seidel permutations).

Examples

			Table of negative Euler permutations, length of rows is A347602:
[0] 0;
[1] 0;
[2] 1;
[3] 0;
[4] 2, 7;
[5] 4, 5, 6, 7, 10, 12, 19, 20, 27, 31, 33, 43, 44, 47, 49, ...
.
The first 8 permutations corresponding to the ranks are for n = 5:
    4 -> [12453],  5 -> [12534],  6 -> [12543],  7 -> [13245],
   10 -> [13452], 12 -> [13542], 19 -> [15234], 20 -> [15243].
		

Crossrefs

Programs

  • Maple
    # Uses function EulerPermutationsRank from A347766.
    A347767Row := n -> `if`(n < 4, [[0,0,1,0][n+1]], EulerPermutationsRank(n, 'neg')): for n from 0 to 6 do A347767Row(n) od;
Showing 1-5 of 5 results.