A347652 Records in the trajectory of all positive integers in the 3x+1 or Collatz problem, including the trajectory [1, 4, 2, 1] of 1.
1, 4, 10, 16, 22, 34, 52, 70, 106, 160, 214, 322, 484, 700, 790, 1186, 1780, 2158, 3238, 4858, 7288, 9232, 13120, 17224, 17494, 26242, 39364, 41524, 45682, 68524, 77092, 97576, 98962, 148444, 167002, 250504, 354292, 504466, 756700, 851290, 1276936, 1417174, 2125762
Offset: 1
Keywords
Examples
The first three rows of A235795 are [1, 4, 2, 1]; [2, 1]; [3, 10, 5, 16, 8, 4, 2, 1]. The records are [1, 4, 10, 16], the same as a(1)..a(4).
Programs
-
PARI
f(n) = if (n%2, 3*n+1, n/2); \\ A014682 row(n) = {my(list=List()); listput(list, n); until(n==1, n = f(n); listput(list, n)); Vec(list);} \\ A235795 lista(nn) = {my(m=0, list = List()); for (n=1, nn, my(v = row(n)); for (k=1, #v, if (v[k]>m, m=v[k]; listput(list, m););)); Vec(list);} \\ Michel Marcus, Sep 10 2021
Extensions
More terms from Michel Marcus, Sep 10 2021
Comments