A347708 Number of distinct possible alternating products of odd-length factorizations of n.
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 1, 2, 1, 4, 2, 1, 1, 5, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 5, 1, 2, 2, 3, 1, 2, 1, 3, 2
Offset: 1
Keywords
Examples
Representative factorizations for each of the a(180) = 7 alternating products: (2*2*3*3*5) -> 5 (2*2*45) -> 45 (2*3*30) -> 20 (2*5*18) -> 36/5 (2*9*10) -> 20/9 (3*4*15) -> 45/4 (180) -> 180
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Positions of 1's appear to be A037143 \ {1}.
The length-3 case is A347709.
A276024 counts distinct positive subset-sums of partitions.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions.
A347441 counts odd-length factorizations with integer alternating product.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Union[altprod/@Select[facs[n],OddQ[Length[#]]&]]],{n,100}]
-
PARI
altprod(facs) = prod(i=1,#facs,facs[i]^((-1)^(i-1))); A347708aux(n, m=n, facs=List([])) = if(1==n, if((#facs)%2, altprod(facs), 0), my(newfacs, r, rats=List([])); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); r = A347708aux(n/d, d, newfacs); if(r, rats = concat(rats,r)))); (rats)); A347708(n) = if(1==n,0,#Set(A347708aux(n))); \\ Antti Karttunen, Jan 29 2025
Extensions
Data section extended to a(105) by Antti Karttunen, Jan 29 2025
Comments