A347709 Number of distinct rational numbers of the form x * z / y for some factorization x * y * z = n, 1 < x <= y <= z.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 4, 0, 0, 1, 1, 0, 1, 0, 3, 1, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 4, 0, 1, 1, 2, 0, 1, 0, 2, 1, 0, 0, 4, 0, 1, 0, 3, 0, 1, 0, 1, 1, 0, 0, 5
Offset: 1
Keywords
Examples
Representative factorizations for each of the a(360) = 9 alternating products: (2,2,90) -> 90 (2,3,60) -> 40 (2,4,45) -> 45/2 (2,5,36) -> 72/5 (2,6,30) -> 10 (2,9,20) -> 40/9 (2,10,18) -> 18/5 (2,12,15) -> 5/2 (3,8,15) -> 45/8
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Union[altprod/@Select[facs[n],Length[#]==3&]]],{n,100}]
-
PARI
A347709(n) = { my(rats=List([])); fordiv(n,z,my(yx=n/z); fordiv(yx, y, my(x = yx/y); if((y <= z) && (x <= y) && (x > 1), listput(rats,x*z/y)))); #Set(rats); }; \\ Antti Karttunen, Jan 29 2025
Extensions
More terms from Antti Karttunen, Jan 29 2025
Comments