A347816 Prime numbers p such that both 15 and 85 are quadratic nonresidue (mod p).
13, 29, 31, 41, 47, 79, 83, 139, 157, 199, 211, 263, 269, 373, 379, 383, 401, 433, 439, 443, 449, 457, 467, 499, 521, 563, 571, 577, 587, 613, 619, 641, 647, 691, 733, 751, 757, 809, 811, 821, 863, 881, 929, 937, 941, 991, 1033, 1049, 1051, 1061
Offset: 1
Keywords
Links
- A. J. J. Heidrich, On the factorization of Eulerian polynomials, Journal of Number Theory, 18(2):157-168, 1984.
Programs
-
Maple
alias(ls = NumberTheory:-LegendreSymbol): isA347816 := k -> isprime(k) and ls(15, k) = -1 and ls(85, k) = -1: A347816List := upto -> select(isA347816, [`$`(3..upto)]): A347816List(1061); # Peter Luschny, Sep 16 2021
-
Mathematica
Select[Prime@Range[180], JacobiSymbol[15, #] == -1 && JacobiSymbol[85,#]==-1 &] (* Stefano Spezia, Sep 16 2021 *)
-
PARI
isok(p) = isprime(p) && (kronecker(15,p)==-1) && (kronecker(85,p)==-1); \\ Michel Marcus, Sep 16 2021
-
Python
from sympy.ntheory import legendre_symbol, primerange A347816_list = [p for p in primerange(3,10**5) if legendre_symbol(15,p) == legendre_symbol(85,p) == -1] # Chai Wah Wu, Sep 16 2021
Comments