cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347816 Prime numbers p such that both 15 and 85 are quadratic nonresidue (mod p).

Original entry on oeis.org

13, 29, 31, 41, 47, 79, 83, 139, 157, 199, 211, 263, 269, 373, 379, 383, 401, 433, 439, 443, 449, 457, 467, 499, 521, 563, 571, 577, 587, 613, 619, 641, 647, 691, 733, 751, 757, 809, 811, 821, 863, 881, 929, 937, 941, 991, 1033, 1049, 1051, 1061
Offset: 1

Views

Author

Sela Fried, Sep 15 2021

Keywords

Comments

Primes p such that E_6(x)/(x + 1) is irreducible (mod p) where E_6(x) is the Eulerian polynomial and E_6(x)/(x + 1) = x^4 + 56x^3 + 246x^2 + 56x + 1. (See A159041.)
The sequence is infinite.
It is the intersection of A038888 and A038972.

Crossrefs

Programs

  • Maple
    alias(ls = NumberTheory:-LegendreSymbol):
    isA347816 := k -> isprime(k) and ls(15, k) = -1 and ls(85, k) = -1:
    A347816List := upto -> select(isA347816, [`$`(3..upto)]):
    A347816List(1061); # Peter Luschny, Sep 16 2021
  • Mathematica
    Select[Prime@Range[180], JacobiSymbol[15, #] == -1 && JacobiSymbol[85,#]==-1 &] (* Stefano Spezia, Sep 16 2021 *)
  • PARI
    isok(p) = isprime(p) && (kronecker(15,p)==-1) && (kronecker(85,p)==-1); \\ Michel Marcus, Sep 16 2021
    
  • Python
    from sympy.ntheory import legendre_symbol, primerange
    A347816_list = [p for p in primerange(3,10**5) if legendre_symbol(15,p) == legendre_symbol(85,p) == -1] # Chai Wah Wu, Sep 16 2021