cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347818 Smallest n-digit brilliant number.

Original entry on oeis.org

4, 10, 121, 1003, 10201, 100013, 1018081, 10000043, 100140049, 1000000081, 10000600009, 100000000147, 1000006000009, 10000000000073, 100000380000361, 1000000000000003, 10000001400000049, 100000000000000831, 1000000014000000049, 10000000000000000049, 100000000380000000361
Offset: 1

Views

Author

Eric Chen, Sep 15 2021

Keywords

Comments

A brilliant number is a semiprime (products of two primes, A001358) whose two prime factors have the same number of decimal digits. For an n-digit brilliant number, the two prime factors must each have ceiling(n/2) decimal digits.
Since all brilliant numbers are semiprimes, a(n) >= A098449(n), also, a(n) = A098449(n) for n = 1, 2, 4, 16, 78, ..., are there infinitely many n such that a(n) = A098449(n)?

Examples

			a(6) =    100013 =   103 * 971.
a(7) =   1018081 =  1009 * 1009.
a(8) =  10000043 =  2089 * 4787.
a(9) = 100140049 = 10007 * 10007.
		

Crossrefs

Programs

  • Mathematica
    Join[{4,10},Table[Module[{k=1},While[PrimeOmega[10^n+k]!=2||Length[ Union[ IntegerLength/@ FactorInteger[ 10^n+k][[;;,1]]]]!=1,k+=2];10^n+k],{n,2,20}]] (* Harvey P. Dale, Jan 09 2024 *)
  • PARI
    isA078972(n)=my(f=factor(n)); (#f[, 1]==1 && f[1, 2]==2) || (#f[, 1]==2 && f[1, 2]==1 && f[2, 2]==1 && #Str(f[1, 1])==#Str(f[2, 1]))
    A084476(n)=for(k=0,10^n,if(isA078972(10^(2*n-1)+k),return(k)))
    a(n)=if(n%2,nextprime(10^((n-1)/2))^2,10^(n-1)+A084476(n/2)) \\ after Charles R Greathouse IV in A078972

Formula

a(n) = 10^(n-1) + A083289(n).
a(2*n) = 10^(2*n-1) + A084476(n).
a(2*n+1) = A003617(n+1)^2.
a(n) >= A098449(n).