cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347838 Positive numbers that are congruent to 2, 5, or 11 modulo 12.

Original entry on oeis.org

2, 5, 11, 14, 17, 23, 26, 29, 35, 38, 41, 47, 50, 53, 59, 62, 65, 71, 74, 77, 83, 86, 89, 95, 98, 101, 107, 110, 113, 119, 122, 125, 131, 134, 137, 143, 146, 149, 155, 158, 161, 167, 170, 173, 179, 182, 185, 191, 194, 197, 203, 206, 209, 215, 218, 221, 227, 230, 233, 239
Offset: 1

Views

Author

Wolfdieter Lang, Oct 21 2021

Keywords

Comments

This sequence follows from the first column sequence of the array A347834, namely A047529 ({1,3,7} (mod 8)), as given in the formula below.
Together with A017617, the positive integers congruent to 8 modulo 12, one obtains A016789, the positive integers congruent to 2 modulo 3. See the array A347839.

Crossrefs

Programs

  • Mathematica
    Map[(3 # + 1)/2 &, LinearRecurrence[{1, 0, 1, -1}, {1, 3, 7, 9}, 60]] (* Michael De Vlieger, Oct 21 2021 *)

Formula

a(n) = (3*A047529(n) + 1)/2.
Trisection: a(3*k+1) = 2 + 12*k, a(3*k+2) = 5 + 12*k, a(3*k+3) = 11 + 12*k, or with a(3*k) = -1 + 12*k for k >= 0.
O.g.f. with a(0) =-1: G(x) = (-1 + 3*x + 3*x^2 + 7*x^3)/((1 - x)*(1 - x^3)) = -6/(1-x) + 4/(1-x)^2 + (1 + x)/(1 + x + x^2). Note that (1 - x)*(1 - x^3) = (1-x)^2*(1 + x + x^2) = 1 - x - x^3 + x^4.
a(n) = a(n-1) + a(n-3) - a(n-4), for n >= 4, given a(n) for 0..3, with a(0) = -1.
a(n) = 2*b(n) + 3*b(n-1) + 6*b(n-2) + b(n-3), with b(n) = floor((n+2)/3) = A002264(n+2).
a(n) = -1 + 3*n + 3*floor(n/3) (from the partial fraction decomposition of G).
E.g.f.: 1 + 2*exp(x)*(2*x - 1) + exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/3. - Stefano Spezia, Dec 08 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = ((sqrt(2)+1)*Pi + sqrt(3)*log(sqrt(3)+2) + sqrt(6)*log(5-2*sqrt(6)))/12. - Amiram Eldar, Dec 30 2021