cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A347898 E.g.f.: Product_{k>=1} (1 + x^k)^(sin(x)/k).

Original entry on oeis.org

1, 0, 2, 0, 24, -30, 694, -1050, 37832, -167076, 3840946, -16352820, 484077316, -3571377810, 92305923462, -735565382370, 24089429290352, -260389373957160, 7612771211634930, -88060997260644552, 2819270530524656316, -42624237378570669990, 1487399781900667121150
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2021

Keywords

Crossrefs

Programs

  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, (1+x^k)^(sin(x)/k))))

A347899 E.g.f.: Product_{k>=1} (1 + x^k)^(cos(x)/k).

Original entry on oeis.org

1, 1, 1, 2, -1, -6, 109, 1154, -2507, 18392, 829181, 6383244, -2209703, -107812394, 4571476337, 317794760230, 2764096980201, -15873576166552, 100411162138201, 7249400365091352, 111212112152829597, 8121369858513002698, 171335979252872509109, 502729844835525379706
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2021

Keywords

Crossrefs

Programs

  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, (1+x^k)^(cos(x)/k))))

A347894 E.g.f.: Product_{k>=1} (1 + x^k)^tan(x).

Original entry on oeis.org

1, 0, 2, 3, 52, 110, 2690, 11676, 247952, 1434600, 37576168, 296088760, 7698854216, 78083294640, 2187100997328, 27174552638520, 806871808214016, 11698163585372736, 370098862531800000, 6300404006917434624, 208037772410558058624, 4032385785901175122560, 141272996628892396692096
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2021

Keywords

Crossrefs

Programs

  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, (1+x^k)^tan(x))))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(tan(x)*sum(k=1, N, sigma(k>>valuation(k, 2))*x^k/k))))

Formula

E.g.f.: exp( tan(x) * Sum_{k>=1} x^k / (k*(1 - x^(2*k))) ). - Ilya Gutkovskiy, Sep 18 2021
E.g.f.: exp( tan(x) * Sum_{k>=1} A000593(k)*x^k/k ). - Seiichi Manyama, Sep 18 2021
Showing 1-3 of 3 results.