A347922 Number of minimal total dominating sets in the n X n rook complement graph.
0, 1, 51, 492, 2500, 8925, 25431, 61936, 134352, 266625, 493075, 861036, 1433796, 2293837, 3546375, 5323200, 7786816, 11134881, 15604947, 21479500, 29091300, 38829021, 51143191, 66552432, 85650000, 109110625, 137697651, 172270476, 213792292, 263338125
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Minimal Total Dominating Set
- Eric Weisstein's World of Mathematics, Rook Complement Graph
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Mathematica
Table[(n - 1)^2 n^2 (5 n^2 - 11 n + 5)/12, {n, 20}] (* Eric W. Weisstein, May 11 2024 *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 51, 492, 2500, 8925, 25431}, 20] (* Eric W. Weisstein, May 11 2024 *) CoefficientList[Series[-x (1 + 44 x + 156 x^2 + 92 x^3 + 7 x^4)/(-1 + x)^7, {x, 0, 20}], x] (* Eric W. Weisstein, May 11 2024 *)
-
PARI
a(n) = (5*n^2 - 11*n + 5)*n^2*(n-1)^2/12 \\ Andrew Howroyd, Jan 19 2022
Formula
From Andrew Howroyd, Jan 19 2022: (Start)
a(n) = 6*binomial(n,3)^2 + 2*binomial(n,2)^3 - binomial(n,2)^2.
a(n) = (5*n^2 - 11*n + 5)*n^2*(n-1)^2/12.
G.f.: x*(1 + 44*x + 156*x^2 + 92*x^3 + 7*x^4)/(1 - x)^7.
(End)
Extensions
Terms a(6) and beyond from Andrew Howroyd, Jan 19 2022
Comments