A347979 a(n) is the smallest even number k whose symmetric representation of sigma(k) has maximum width n.
2, 6, 60, 120, 360, 840, 3360, 2520, 5040, 10080, 15120, 32760, 27720, 50400, 98280, 83160, 110880, 138600, 221760, 277200, 332640, 360360, 554400, 960960, 831600, 942480, 720720, 2217600, 1965600, 1441440
Offset: 1
Examples
The pattern of maximum widths within the single part of the symmetric representation of sigma for the first four numbers in the sequence is: a(n) parts successive widths 2: 1 1 6: 1 1 2 1 60: 1 1 2 3 2 3 2 1 120: 1 1 2 3 4 3 2 1
Crossrefs
Programs
-
Mathematica
a262045[n_] := Module[{a=Accumulate[Map[If[Mod[n - # (#+1)/2, #]==0, (-1)^(#+1), 0] &, Range[Floor[(Sqrt[8n+1]-1)/2]]]]}, Join[a, Reverse[a]]] a347979[n_, mw_] := Module[{list=Table[0, mw], i, v}, For[i=2, i<=n, i+=2, v=Max[a262045[i]]; If [list[[v]]==0, list[[v]]=i]]; list] a347979[2500000, 33] (* computes a(1..30), a(33); a(31..32) > 2500000 *)
Formula
It appears that a(n) = A250070(n) if n >= 2.
Comments