A347980 a(n) is the smallest odd number k whose symmetric representation of sigma(k) has maximum width n.
1, 15, 315, 2145, 3465, 17325, 45045, 51975, 225225, 405405, 315315, 765765, 1576575, 2297295
Offset: 1
Examples
The pattern of maximum widths of the parts in the symmetric representation of sigma for the first four terms in the sequence is: a(n) parts successive widths 1: 1 1 15: 3 1 2 1 315: 3 1 3 1 2145: 7 1 2 3 4 3 2 1
Crossrefs
Programs
-
Mathematica
a262045[n_] := Module[{a=Accumulate[Map[If[Mod[n - # (#+1)/2, #]==0, (-1)^(#+1), 0] &, Range[Floor[(Sqrt[8n+1]-1)/2]]]]}, Join[a, Reverse[a]]] a347980[n_, mw_] := Module[{list=Table[0, mw], i, v}, For[i=1, i<=n, i+=2, v=Max[a262045[i]]; If [list[[v]]==0, list[[v]]=i]]; list] a347980[2500000,14] (* long evaluation time *)
Comments