A239663
a(n) is the smallest number k such that the symmetric representation of sigma(k) has n parts.
Original entry on oeis.org
1, 3, 9, 21, 63, 147, 357, 903, 2499, 6069, 13915, 29095, 59455, 142945, 320045, 643885, 1367465, 3287735, 6779135, 13853015, 30262595, 61773745
Offset: 1
------------------------------------------------------
n a(n) A239665 A266094(n)
------------------------------------------------------
1 1 [1] 1
2 3 [2, 2] 4
3 9 [5, 3, 5] 13
4 21 [11, 5, 5, 11] 32
5 63 [32, 12, 16, 12, 32] 104
...
For n = 3 the symmetric representation of sigma(9) = 13 contains three parts [5, 3, 5] as shown below:
.
. _ _ _ _ _ 5
. |_ _ _ _ _|
. |_ _ 3
. |_ |
. |_|_ _ 5
. | |
. | |
. | |
. | |
. |_|
.
Cf.
A000203,
A196020,
A236104,
A235791,
A237048,
A237270,
A237271,
A237591,
A237593,
A238443,
A239657,
A239660,
A239665,
A239931-
A239934,
A245092,
A262626,
A266094.
-
(* a239663[] permits computation in intervals *)
(* Function a237270[] is defined in A237270 *)
(* variable "list" contains the first occurrences up to m *)
a239663[list_,{m_, n_}]:=Module[{firsts=list, g=Length[list], i, p}, For[i=m, i<=n, i++, p=Length[a237270[i]]; If[p>g, AppendTo[firsts, i]; g=p]]; firsts]
a239663[{1}, {1, 1000}] (* computes the first 8 values *)
(* Hartmut F. W. Hoft, Jul 08 2014 *)
(* support functions are defined in A341969, A341970 & A341971 *)
a239663[n_, len_] := Module[{list=Table[0, len], i, v}, For[i=1, i<=n, i+=2, v=Count[a341969[i], 0]+1;If[list[[v]]==0, list[[v]]=i]]; list]
a239663[62000000,22] (* Hartmut F. W. Hoft, Sep 22 2021 *)
A253258
Square array read by antidiagonals, j>=1, k>=1: T(j,k) is the j-th number n such that the symmetric representation of sigma(n) has at least a part with maximum width k.
Original entry on oeis.org
1, 2, 6, 3, 12, 60, 4, 15, 72, 120, 5, 18, 84, 180, 360, 7, 20, 90, 240, 420, 840, 8, 24, 126, 252, 720, 1080, 3360, 9, 28, 140, 336, 1008, 1260, 3600, 2520, 10, 30, 144, 378, 1200, 1440, 3780, 5544, 5040, 11, 35, 168, 432, 1320, 1680, 3960, 6300, 7560, 10080, 13, 36, 198, 480, 1512, 1800, 4200, 6720, 9240, 12600, 15120
Offset: 1
The corner of the square array T(j,k) begins:
1, 6, 60, 120, 360, ...
2, 12, 72, ...
3, 15, 84, ...
4, 18, ...
5, 20, ...
7, ...
...
For j = 1 and k = 2; T(1,2) is the first number n such that the symmetric representation of sigma(n) has a part with maximum width 2 as shown below:
.
Dyck paths Cells Widths
_ _ _ _ _ _ _ _
_ _ _ |_ |_|_|_|_|_ / / / /
| |_ |_|_|_ / /
|_ _ | |_|_|_| / / /
| | |_| /
| | |_| /
| | |_| /
.
The widths of the symmetric representation of sigma(6) = 12 are [1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1], also the 6th row of triangle A249351.
From _Hartmut F. W. Hoft_, Sep 20 2024: (Start)
Extending the terms T(j,k) to a 12x12 square array:
j\k 1 2 3 4 5 6 7 8 9 10 11 12
--------------------------------------------------------------
1 | 1 6 60 120 360 840 3360 2520 5040 10080 15120 32760
2 | 2 12 72 180 420 1080 3600 5544 7560 12600 20160 36960
3 | 3 15 84 240 720 1260 3780 6300 9240 13860 25200 39600
4 | 4 18 90 252 1008 1440 3960 6720 10920 15840 35280 41580
5 | 5 20 126 336 1200 1680 4200 6930 11880 16380 40320 43680
6 | 7 24 140 378 1320 1800 4320 7140 14040 16800 42840 45360
7 | 8 28 144 432 1512 1980 4620 7920 16632 18480 46800 46200
8 | 9 30 168 480 1560 2016 4680 8190 17160 18900 47880 47520
9 | 10 35 198 504 1848 2100 5280 8400 17640 21420 56160 49140
10| 11 36 210 540 1890 2160 5400 9360 18720 21840 56700 51480
11| 13 40 216 594 2184 2340 5460 10296 19800 22680 57120 52920
12| 14 42 264 600 2310 2640 5940 10800 20790 23760 57960 54600
...
(End)
Cf.
A000203,
A196020,
A235791,
A236104,
A237048,
A237270,
A237271,
A237591,
A237593,
A245092,
A249351,
A250068,
A250070,
A250071.
-
(* Computing table T(j,k) of size mxn with bound b *)
eP[n_] := If[EvenQ[n], FactorInteger[n][[1, 2]], 0]+1
sDiv[n_] := Module[{d=Select[Divisors[n], OddQ]}, Select[Union[d, d*2^eP[n]], #<=row[n]&]]
mWidth[n_] :=Max[FoldList[#1+If[OddQ[#2], 1, -1]&, sDiv[n]]]
t253258[{m_, n_}, b_] := Module[{s=Table[0, {i, m+1}, {j, n}], k=1, w, f}, While[k<=b, w=mWidth[k]; If[w<=n, f=s[[m+1, w]]; If[fHartmut F. W. Hoft, Sep 20 2024 *)
A347979
a(n) is the smallest even number k whose symmetric representation of sigma(k) has maximum width n.
Original entry on oeis.org
2, 6, 60, 120, 360, 840, 3360, 2520, 5040, 10080, 15120, 32760, 27720, 50400, 98280, 83160, 110880, 138600, 221760, 277200, 332640, 360360, 554400, 960960, 831600, 942480, 720720, 2217600, 1965600, 1441440
Offset: 1
The pattern of maximum widths within the single part of the symmetric representation of sigma for the first four numbers in the sequence is:
a(n) parts successive widths
2: 1 1
6: 1 1 2 1
60: 1 1 2 3 2 3 2 1
120: 1 1 2 3 4 3 2 1
Cf.
A174973,
A237048,
A237270,
A237271,
A237591,
A237593,
A238443,
A249351 (widths),
A250070,
A262045,
A341969,
A341970,
A341971,
A347980.
-
a262045[n_] := Module[{a=Accumulate[Map[If[Mod[n - # (#+1)/2, #]==0, (-1)^(#+1), 0] &, Range[Floor[(Sqrt[8n+1]-1)/2]]]]}, Join[a, Reverse[a]]]
a347979[n_, mw_] := Module[{list=Table[0, mw], i, v}, For[i=2, i<=n, i+=2, v=Max[a262045[i]]; If [list[[v]]==0, list[[v]]=i]]; list]
a347979[2500000, 33] (* computes a(1..30), a(33); a(31..32) > 2500000 *)
A348171
Square array read by upward antidiagonals in which T(w,p) is the smallest number k whose symmetric representation of sigma(k) consists of p parts with maximum width w occurring in at least one of its p parts.
Original entry on oeis.org
1, 6, 3, 60, 78, 9, 120, 7620, 15, 21, 360, 28920, 315, 75, 81, 840, 261720, 1326, 495, 63, 147, 3360, 1422120, 3465, 22542, 525, 189, 729, 2520, 22622880, 17325, 44574, 5005, 1275, 357, 903, 5040, 12728520, 45045, 199578, 6435, 16575, 1287, 1197, 3025, 10080, 50858640, 51975, 7734558, 34034, 131835, 2145, 3861, 2499, 6875
Offset: 1
The 10x10 section of the table with dashes indicating values greater than 6*10^7; rows w denote the maximum width and columns p the number of parts in the symmetric representation of sigma(T(w,p)).
w\p | 1 2 3 4 5 6 7 8 9 ...
----------------------------------------------------------------------------
1 | 1 3 9 21 81 147 729 903 3025
2 | 6 78 15 75 63 189 357 1197 2499
3 | 60 7620 315 495 525 1275 1287 3861 3591
4 | 120 28920 1326 22542 5005 16575 2145 29325 11583
5 | 360 261720 3465 44574 6435 131835 76125 24225 82593
6 | 840 1422120 17325 199578 34034 83655 196707 468027 62985
7 | 3360 22622880 45045 7734558 153153 442442 314925 1108965 471975
8 | 2520 12728520 51975 - 205275 2067065 1429275 2359875 557175
9 | 5040 50858640 225225 - 646646 2863718 2395197 5353725 2785875
10| 10080 - 405405 - 1990989 2124694 6500375 36535499 7753875
...
The symmetric representation of sigma for T(2,3) = 15 consists of the three parts (8, 8, 8) of maximum widths (1, 2, 1), and that of T(3,3) = 315 consists of the three parts (158, 308, 158) of maximum widths (1, 3, 1).
Cf.
A237048,
A237270,
A237271,
A237591,
A237593,
A238443,
A239663,
A249223,
A250070,
A262045,
A318843,
A341969,
A341970,
A341971,
A347979,
A347980,
A348142.
-
(* function a341969 is defined in A341969 *)
a348171[n_, {w_, p_}] := Module[{list=Table[0, {i, w}, {j, p}], k, s, c, u}, For[k=1, k<=n, k++, s=Map[Max, Select[SplitBy[a341969[k], # != 0 &], #[[1]] != 0 &]]; c = Length[s]; u = Max[s]; If[u<=w && c<=p, If[list[[u, c]] == 0, list[[u, c]] = k ]]]; list]
table=a348171[60000000, {15, 15}] (* 15x15 table; very long computation time *)
p[n_] := n-row[n-1](row[n-1]+1)/2
w[n_] := row[n-1]-p[n]+2
Map[table[[w[#], p[#]]]&, Range[55]] (* sequence data *)
A348142
Square array read by upward antidiagonals in which T(w,p) is the smallest number k whose symmetric representation of sigma(k) consists of p parts with maximum width w occurring in everyone of its p parts.
Original entry on oeis.org
1, 6, 3, 60, 78, 9, 120, 7620, 1014, 21, 360, 28920, 967740, 12246, 81, 840, 261720, 6969720, 116136420, 171366, 147, 3360, 1422120
Offset: 1
The 10x8 section of the table T(w,p) with dashes indicating values greater than 120*10^6; rows w denote the common maximum width in all parts and columns p the number of parts in the symmetric representation of sigma(T(w,p)).
w\p | 1 2 3 4 5 6 7 8 ...
--------------------------------------------------------------------------
1 | 1 3 9 21 81 147 729 903
2 | 6 78 1014 12246 171366 1922622 28960854 -
3 | 60 7620 967740 116136420 - - -
4 | 120 28920 6969720 -
5 | 360 261720 -
6 | 840 1422120 -
7 | 3360 22622880 -
8 | 2520 12728520 -
9 | 5040 50858640 -
10| 10080 -
...
The symmetric representation of sigma for T(2,2) = 78 consists of the two parts (84, 84) of maximum widths (2, 2), and that of T(2,3) = 1014 consists of the three parts (1020, 156, 1020) of maximum widths (2, 2, 2).
Cf.
A237048,
A237270,
A237271,
A237591,
A237593,
A238443,
A239663,
A249223,
A250070,
A262045,
A318843,
A341969,
A341970,
A341971,
A347979,
A347980,
A348171.
-
(* function a341969 is defined in A341969 *)
a348142[n_, {w_, p_}] := Module[{list=Table[0, {i, w}, {j, p}], k, s, c, u}, Monitor[For[k=1, k<=n, k++, s=Map[Max, Select[SplitBy[a341969[k], #!=0&], #[[1]]!=0&]]; c=Length[s]; u=Union[s]; If[Length[u]==1&&u[[1]]<=w&&c<=p, If[list[[u[[1]], c]]==0, list[[u[[1]], c]]=k]]], list]; list]
table=a348142[120000000, {10, 10}] (* 10x10 table; very long computation time *)
p[n_] := n-row[n-1](row[n-1]+1)/2
w[n_] := row[n-1]-p[n]+2
Map[table[[w[#], p[#]]]&, Range[23]] (* sequence data *)
Showing 1-5 of 5 results.
Comments