cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A318843 a(n) is the smallest number k such that the symmetric representation of sigma(k) consists of n parts of width 1.

Original entry on oeis.org

1, 3, 9, 21, 81, 147, 729, 903, 3025, 6875, 59049, 29095, 531441, 171875, 366025, 643885, 43046721, 3511475
Offset: 1

Views

Author

Hartmut F. W. Hoft, Sep 04 2018

Keywords

Comments

The sequence is infinite since, for example, for any n >= 1 the symmetric representation of sigma(3^n) consists of n + 1 parts of width 1. However, it is not increasing since a(11) = 59049 = 3^10 and a(12) = 29095 = 5 * 11 * 23^2. Also a(13) <= 531441 = 3^12.
This sequence is a subsequence of A174905; its subsequences a(n) for odd/even n are subsequences of A241010/A241008, respectively. Some even-indexed elements of this sequence are members of A239663, e.g., a(2), a(4), a(6), a(8) and a(12), but not a(10) = 6875.
The central pair of parts in the symmetric representation of sigma(a(2)), sigma(a(4)) and sigma(a(8)) meets at the diagonal (see A298856).
From Hartmut F. W. Hoft, Oct 04 2021: (Start)
An upper bound to the sequence is a(n) <= 3^(n-1), n >= 1, (see A348171).
For p = 1,2,3,5,7,11,13,17, a(p) = 3^(p-1) and this equality possibly holds for all a(p) with p a prime.
Also, 75 * 10^6 < a(19) <= 3^18, a(20) = 15391255, a(21) = 44289025 and a(n) > 75 * 10^6 for n > 21.
a(13)-a(18) computations based on A348171 rather than A237270.
The symmetric representation of sigma(3^(p-1)), p prime, consists of p parts and its middle part has area 3^((p-1)/2). (End)
a(n) >= A038547(n) with equality for n=1 and primes n since the distinct prime divisors of n can be replaced by primes 3, 5, 7, 11, ... yielding a smaller number k with the same number of odd divisors. However, some parts in the symmetric representation of sigma(k) have width at least 2. - Hartmut F. W. Hoft, Dec 11 2023

Examples

			The smallest number k whose symmetric representation of sigma(k) consists of four parts of width one is a(4) = 21. The parts are 11, 5, 5, 11.
a(4) = 3*7 has width pattern, A341969, 1010101 while A038547(4) = 3*5 has width pattern 1012101. a(6) = 3 * 7^2 = 147 has width pattern 10101010101 while A038547(6) = 3^2 * 5 = 45 has width pattern 10121212101. - _Hartmut F. W. Hoft_, Dec 11 2023
		

Crossrefs

Programs

  • Mathematica
    (* Function path[] is defined in A237270 *)
    segmentsSR[pathN0_, pathN1_] := SplitBy[Map[Min, Drop[Drop[pathN0, 1], -1] - pathN1], #==0&]
    regions[pathN0_ ,pathN1_] := Select[Map[Apply[Plus, #]&, segmentsSR[pathN0, pathN1]], #!=0&]
    width1Q[pathN0_, pathN1_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[pathN0, 1], -1] - pathN1, 1]]]
    (* parameter seq is the list of elements of the sequence in interval 1..m-1 already computed with an entry of 0 representing an element not yet found *)
    a318843[m_, n_, seq_] := Module[{list=Join[seq, Table[0, 10]], path1=path[m-1], path0, k, a, r, w}, For[k=m, k<=n, k++, path0=path[k]; a=regions[path0, path1]; r=Length[a]; w=width1Q[path0, path1]; If[w && list[[r]]==0, list[[r]]=k]; path1=path0]; list]
    a318843[2,60000,{1}] (* data - actually computed in steps *)

Extensions

a(13)-a(18) from Hartmut F. W. Hoft, Oct 04 2021

A320537 Square array read by antidiagonals in which T(n,k) is the n-th even number j with the property that the symmetric representation of sigma(j) has k parts.

Original entry on oeis.org

2, 4, 10, 6, 14, 50, 8, 22, 70, 230, 12, 26, 98, 250, 1150, 16, 34, 110, 290, 1250, 5050, 18, 38, 130, 310, 1450, 5150, 22310, 20, 44, 154, 370, 1550, 5290, 23230, 106030, 24, 46, 170, 406, 1850, 5350, 23690, 106490, 510050, 28, 52, 182, 410, 2030, 5450, 24610, 107410, 513130, 2065450
Offset: 1

Views

Author

Omar E. Pol, Oct 15 2018

Keywords

Comments

This is a permutation of the positive even numbers (A299174).
The union of all odd-indexed columns gives A319796, the even numbers in A071562.
The union of all even-indexed columns gives A319802, the even numbers in A071561.

Examples

			From _Hartmut F. W. Hoft_, Oct 06 2021: (Start)
The 10x10 section of table T(n,k):
(Table with first 20 terms from _Omar E. Pol_)
------------------------------------------------------------------
n\k | 1   2   3    4    5     6     7      8       9       10  ...
------------------------------------------------------------------
  1 | 2   10  50   230  1150  5050  22310  106030  510050  2065450
  2 | 4   14  70   250  1250  5150  23230  106490  513130  2115950
  3 | 6   22  98   290  1450  5290  23690  107410  520150  2126050
  4 | 8   26  110  310  1550  5350  24610  110170  530150  2157850
  5 | 12  34  130  370  1850  5450  25070  112010  530450  2164070
  6 | 16  38  154  406  2030  5650  25250  112930  532450  2168150
  7 | 18  44  170  410  2050  5750  25750  114770  534290  2176550
  8 | 20  46  182  430  2150  6250  25990  115690  537050  2186650
  9 | 24  52  190  434  2170  6350  26450  116150  540350  2216950
  10| 28  58  238  470  2350  6550  26750  117070  544870  2219650
   ... (End)
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 is defined in A341969 *)
    sArray[b_, pMax_] := Module[{list=Table[{}, pMax], i, p}, For[i=2, i<=b, i+=2, p=Length[Select[SplitBy[a341969[i], #!=0&], #[[1]]!=0&]]; If[p<=pMax&&Length[list[[p]]]Hartmut F. W. Hoft, Oct 06 2021 *)

Extensions

Terms a(21) and beyond from Hartmut F. W. Hoft, Oct 06 2021

A346969 1 together with the square array T(n,k) read by upward antidiagonals in which T(n, k), n >= 1, is the n-th odd number j >= 3 such that the symmetric representation of sigma of j has k >= 2 parts.

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 21, 11, 25, 27, 63, 13, 35, 33, 81, 147, 17, 45, 39, 99, 171, 357, 19, 49, 51, 117, 189, 399, 903, 23, 77, 55, 153, 207, 441, 987, 2499, 29, 91, 57, 165, 243, 483, 1029, 2709, 6069, 31, 121, 65, 195, 261, 513, 1113, 2793, 6321, 13915, 37, 135, 69, 231, 275, 567, 1197, 2961, 6325, 14847, 29095
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 06 2021

Keywords

Comments

This sequence is a permutation of the odd positive integers.
The first row of table T(n,k) preceded by a(1) = 1 is A239663; the first column is the sequence A065091 of odd primes; the second column contains the squares of the odd primes as a subsequence (see also A247687).

Examples

			The 10x10 initial submatrix of table T(n,k):
n\k | 2   3    4    5     6     7     8      9      10     11  ...
------------------------------------------------------------------
  1 | 3   9    21   63    147   357   903    2499   6069   13915
  2 | 5   15   27   81    171   399   987    2709   6321   14847
  3 | 7   25   33   99    189   441   1029   2793   6325   15125
  4 | 11  35   39   117   207   483   1113   2961   6783   15141
  5 | 13  45   51   153   243   513   1197   3025   6875   15351
  6 | 17  49   55   165   261   567   1239   3087   6909   15729
  7 | 19  77   57   195   275   609   1265   3249   7011   16023
  8 | 23  91   65   231   279   621   1281   3339   7203   16611
  9 | 29  121  69   255   297   651   1375   3381   7353   16779
  10| 31  135  75   273   333   729   1407   3591   7581   17157
   ...
a(9) = 25 = T(3,3) since only 9 and 15 are smaller odd numbers whose symmetric representation of sigma consists of three parts. All 3 parts of the symmetric representation of sigma for 9 and for 25 have width 1 while the center part for that of 15 has width 2.
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 is defined in A341969 *)
    sArray[b_, pMax_] := Module[{list=Table[{}, pMax+1], i, p}, For[i=3, i<=b, i+=2, p=Length[Select[SplitBy[a341969[i], #!=0&], #[[1]]!=0&]]; If[p<=pMax+1&&Length[list[[p]]]
    				

A348142 Square array read by upward antidiagonals in which T(w,p) is the smallest number k whose symmetric representation of sigma(k) consists of p parts with maximum width w occurring in everyone of its p parts.

Original entry on oeis.org

1, 6, 3, 60, 78, 9, 120, 7620, 1014, 21, 360, 28920, 967740, 12246, 81, 840, 261720, 6969720, 116136420, 171366, 147, 3360, 1422120
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 04 2021

Keywords

Comments

It appears that the first row is A318843 and that the first column is A250070.
Columns 1 and 2 both are identical with those of the table in A348171 and row 1 is identical with that of A348171.
In the remainder of the 7th antidiagonal a(24..26) > 120*10^6, a(27) = 1922622, and a(28) = 903.

Examples

			The 10x8 section of the table T(w,p) with dashes indicating values greater than 120*10^6; rows w denote the common maximum width in all parts and columns p the number of parts in the symmetric representation of sigma(T(w,p)).
w\p | 1     2         3        4         5        6        7        8  ...
--------------------------------------------------------------------------
  1 | 1     3         9        21        81       147     729      903
  2 | 6     78        1014     12246     171366   1922622 28960854  -
  3 | 60    7620      967740   116136420   -         -       -
  4 | 120   28920     6969720    -
  5 | 360   261720      -
  6 | 840   1422120     -
  7 | 3360  22622880    -
  8 | 2520  12728520    -
  9 | 5040  50858640    -
  10| 10080    -
   ...
The symmetric representation of sigma for T(2,2) = 78 consists of the two parts (84, 84) of maximum widths (2, 2), and that of T(2,3) = 1014 consists of the three parts (1020, 156, 1020) of maximum widths (2, 2, 2).
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 is defined in A341969 *)
    a348142[n_, {w_, p_}] := Module[{list=Table[0, {i, w}, {j, p}], k, s, c, u}, Monitor[For[k=1, k<=n, k++, s=Map[Max, Select[SplitBy[a341969[k], #!=0&], #[[1]]!=0&]]; c=Length[s]; u=Union[s]; If[Length[u]==1&&u[[1]]<=w&&c<=p, If[list[[u[[1]], c]]==0, list[[u[[1]], c]]=k]]], list]; list]
    table=a348142[120000000, {10, 10}] (* 10x10 table; very long computation time *)
    p[n_] := n-row[n-1](row[n-1]+1)/2
    w[n_] := row[n-1]-p[n]+2
    Map[table[[w[#], p[#]]]&,  Range[23]] (* sequence data *)

Formula

a((w+p-2)(w+p-1)/2 + p) = T(w,p), for all w, p >= 1.
T(w(n),p(n)) = a(n), for all n >= 1, where p(n) = n - r(n-1) * (r(n-1) + 1)/2, w(n) = r(n-1) - p(n) + 2, and r(n) = floor((sqrt(8*n+1) - 1)/2).
Showing 1-4 of 4 results.