cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A347405 a(n) = Sum_{d|n} 2^(tau(d) - 1).

Original entry on oeis.org

1, 3, 3, 7, 3, 13, 3, 15, 7, 13, 3, 49, 3, 13, 13, 31, 3, 49, 3, 49, 13, 13, 3, 185, 7, 13, 15, 49, 3, 159, 3, 63, 13, 13, 13, 341, 3, 13, 13, 185, 3, 159, 3, 49, 49, 13, 3, 713, 7, 49, 13, 49, 3, 185, 13, 185, 13, 13, 3, 2275, 3, 13, 49, 127, 13, 159, 3, 49, 13, 159, 3, 2525, 3, 13, 49, 49
Offset: 1

Views

Author

Seiichi Manyama, Oct 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 2^(DivisorSigma[0, #] - 1) &]; Array[a, 80] (* Amiram Eldar, Oct 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, 2^(numdiv(d)-1));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 2^(numdiv(k)-1)*x^k/(1-x^k)))

Formula

If p is prime, a(p^n) = 2^(n+1) - 1.
G.f.: Sum_{k>=1} 2^(tau(k) - 1) * x^k/(1 - x^k).

A348223 a(n) = Sum_{d|n} (-1)^(sigma(d) - 1).

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, -2, 5, 0, 2, 0, 0, -2, 0, 0, 0, 1, 0, 0, 0, 0, -4, 0, 6, -2, 0, -2, 3, 0, 0, -2, 0, 0, -4, 0, 0, -2, 0, 0, 0, 1, 2, -2, 0, 0, 0, -2, 0, -2, 0, 0, -6, 0, 0, -2, 7, -2, -4, 0, 0, -2, -4, 0, 4, 0, 0, -2, 0, -2, -4, 0, 0, 1, 0, 0, -6, -2, 0, -2, 0, 0, -4, -2, 0, -2, 0, -2, 0, 0, 2, -2, 3, 0, -4, 0, 0, -6
Offset: 1

Views

Author

Seiichi Manyama, Oct 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(DivisorSigma[1, #] - 1) &]; Array[a, 100] (* Amiram Eldar, Oct 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(sigma(d)-1));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, (-1)^(sigma(k)-1)*x^k/(1-x^k)))

Formula

If p is an odd prime, a(p) = 0.
G.f.: Sum_{k>=1} (-1)^(sigma(k) - 1) * x^k/(1 - x^k).
From Bernard Schott, Oct 19 2021: (Start)
If p is even prime = 2, a(2^k) = k+1 for k >= 0.
If p is odd prime, a(p^even) = 1 and a(p^odd) = 0 (compare with formulas in A347992). (End)

A348350 a(n) = Sum_{d|n} d^(sigma(d) - 1).

Original entry on oeis.org

1, 5, 28, 4101, 3126, 362797088, 823544, 4398046515205, 282429536509, 100000000000003130, 285311670612, 137370551967459378662949775392, 302875106592254, 229585692886981495483044092, 1122274146401882171630862528
Offset: 1

Views

Author

Seiichi Manyama, Oct 14 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(DivisorSigma[1, #] - 1) &]; Array[a, 14] (* Amiram Eldar, Oct 14 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(sigma(d)-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(sigma(k)-1)*x^k/(1-x^k)))

Formula

G.f.: Sum_{k>=1} k^(sigma(k) - 1) * x^k/(1 - x^k).
If p is prime, a(p) = 1 + p^p.
Showing 1-3 of 3 results.