cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A347991 a(n) = Sum_{d|n} 2^(sigma(d) - 1).

Original entry on oeis.org

1, 5, 9, 69, 33, 2061, 129, 16453, 4105, 131109, 2049, 134219853, 8193, 8388741, 8388649, 1073758277, 131073, 274877913101, 524289, 2199023386725, 2147483785, 34359740421, 8388609, 576460752437659725, 1073741857, 2199023263749, 549755817993, 36028797027352773, 536870913, 2361183241434831128621
Offset: 1

Views

Author

Seiichi Manyama, Oct 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 2^(DivisorSigma[1, #] - 1) &]; Array[a, 30] (* Amiram Eldar, Oct 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, 2^(sigma(d)-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 2^(sigma(k)-1)*x^k/(1-x^k)))

Formula

If p is prime, a(p) = 1 + 2^p.
G.f.: Sum_{k>=1} 2^(sigma(k) - 1) * x^k/(1 - x^k).

A347992 a(n) = Sum_{d|n} (-1)^(tau(d) - 1).

Original entry on oeis.org

1, 0, 0, 1, 0, -2, 0, 0, 1, -2, 0, -2, 0, -2, -2, 1, 0, -2, 0, -2, -2, -2, 0, -4, 1, -2, 0, -2, 0, -6, 0, 0, -2, -2, -2, -1, 0, -2, -2, -4, 0, -6, 0, -2, -2, -2, 0, -4, 1, -2, -2, -2, 0, -4, -2, -4, -2, -2, 0, -8, 0, -2, -2, 1, -2, -6, 0, -2, -2, -6, 0, -4, 0, -2, -2, -2, -2, -6, 0, -4, 1, -2, 0, -8, -2, -2, -2
Offset: 1

Views

Author

Seiichi Manyama, Oct 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(DivisorSigma[0, #] - 1) &]; Array[a, 100] (* Amiram Eldar, Oct 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(numdiv(d)-1));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, (-1)^(numdiv(k)-1)*x^k/(1-x^k)))

Formula

If p is prime, a(p) = 0.
If p is prime, a(p^even) = 1 and a(p^odd) = 0. - Michel Marcus, Oct 13 2021
If p <> q primes, a(p*q) = -2 (A006881). - Bernard Schott, Oct 13 2021
G.f.: Sum_{k>=1} (-1)^(tau(k) - 1) * x^k/(1 - x^k). - Seiichi Manyama, Oct 14 2021

A348349 a(n) = Sum_{d|n} d^(tau(d) - 1).

Original entry on oeis.org

1, 3, 4, 19, 6, 222, 8, 531, 85, 1008, 12, 249070, 14, 2754, 3384, 66067, 18, 1889871, 20, 3201024, 9272, 10662, 24, 4586721006, 631, 17592, 19768, 17213138, 30, 21870004602, 32, 33620499, 35952, 39324, 42888, 2821112046175, 38, 54894, 59336, 163843201536
Offset: 1

Views

Author

Seiichi Manyama, Oct 14 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(DivisorSigma[0, #] - 1) &]; Array[a, 40] (* Amiram Eldar, Oct 14 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(numdiv(d)-1));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, k^(numdiv(k)-1)*x^k/(1-x^k)))

Formula

G.f.: Sum_{k>=1} k^(tau(k) - 1) * x^k/(1 - x^k).
If p is prime, a(p) = 1 + p.
Showing 1-3 of 3 results.