cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347992 a(n) = Sum_{d|n} (-1)^(tau(d) - 1).

Original entry on oeis.org

1, 0, 0, 1, 0, -2, 0, 0, 1, -2, 0, -2, 0, -2, -2, 1, 0, -2, 0, -2, -2, -2, 0, -4, 1, -2, 0, -2, 0, -6, 0, 0, -2, -2, -2, -1, 0, -2, -2, -4, 0, -6, 0, -2, -2, -2, 0, -4, 1, -2, -2, -2, 0, -4, -2, -4, -2, -2, 0, -8, 0, -2, -2, 1, -2, -6, 0, -2, -2, -6, 0, -4, 0, -2, -2, -2, -2, -6, 0, -4, 1, -2, 0, -8, -2, -2, -2
Offset: 1

Views

Author

Seiichi Manyama, Oct 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(DivisorSigma[0, #] - 1) &]; Array[a, 100] (* Amiram Eldar, Oct 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(numdiv(d)-1));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, (-1)^(numdiv(k)-1)*x^k/(1-x^k)))

Formula

If p is prime, a(p) = 0.
If p is prime, a(p^even) = 1 and a(p^odd) = 0. - Michel Marcus, Oct 13 2021
If p <> q primes, a(p*q) = -2 (A006881). - Bernard Schott, Oct 13 2021
G.f.: Sum_{k>=1} (-1)^(tau(k) - 1) * x^k/(1 - x^k). - Seiichi Manyama, Oct 14 2021