cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A348200 Terms of A348004 having more unitary divisors than any smaller term.

Original entry on oeis.org

1, 3, 12, 60, 660, 9240, 157080, 2984520, 68643960, 3226266120
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2021

Keywords

Comments

The corresponding numbers of unitary divisors are 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... (apparently, all the powers of 2).
a(11) > 7*10^10, if it exists.

Examples

			The sequence A348004 begins with 1, 3, 4, 5, 7, 8, 9, 11 and 12. The number of unitary divisors of these terms are 1, 2, 2, 2, 2, 2, 2, 2 and 4, respectively. The record values, 1, 2 and 4, occur at 1, 3 and 12, the first 3 terms of this sequence.
		

Crossrefs

The unitary version of A348198.

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := Length @ Union[uphi /@ (d = Select[Divisors[n], CoprimeQ[#, n/#] &])] == Length[d]; dm = 0; s = {}; Do[If[q[n], d = 2^PrimeNu[n]; If[d > dm, dm = d; AppendTo[s, n]]], {n, 1, 10^6}]; s

A348173 a(n) is the sum of the distinct values obtained when the unitary totient function is applied to the unitary divisors of n.

Original entry on oeis.org

1, 1, 3, 4, 5, 3, 7, 8, 9, 5, 11, 12, 13, 7, 15, 16, 17, 9, 19, 20, 21, 11, 23, 24, 25, 13, 27, 28, 29, 15, 31, 32, 33, 17, 35, 36, 37, 19, 39, 40, 41, 21, 43, 44, 45, 23, 47, 48, 49, 25, 51, 52, 53, 27, 55, 56, 57, 29, 59, 60, 61, 31, 63, 64, 65, 33, 67, 68, 69, 35, 71, 72, 73, 37, 75, 76, 77, 39, 79, 80, 81, 41, 83, 78
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2021

Keywords

Comments

First differs from A283971 at n = 84.

Examples

			The unitary divisors of 18 are {1, 2, 9, 18} and their uphi values are {1, 1, 8, 8}. The set of distinct values is {1, 8} whose sum is 9. Therefore, a(18) = 9.
		

Crossrefs

The unitary version of A348158.

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Plus@@ DeleteDuplicates[uphi /@ Select[Divisors[n], CoprimeQ[#, n/#] &]]; Array[a, 100]

Formula

a(n) <= n, with equality if and only if n is in A348004.

A348003 Indices k of records of low value of the ratios A348001(k)/A034444(k) between the number of distinct values of the unitary totient function applied to the unitary divisors of k and the number of unitary divisors of k.

Original entry on oeis.org

1, 2, 546, 2730, 13650, 101010, 199290, 996450, 1919190, 7373730, 28020174, 32626230, 125353410, 140100870, 700504350, 2381714790, 11908573950, 15270994830
Offset: 1

Views

Author

Amiram Eldar, Sep 23 2021

Keywords

Comments

The maximal possible value of the ratio A348001(k)/A034444(k) is 1 which occurs at the terms of A348004.
The rounded values of the corresponding record values are 1, 0.5, 0.438, 0.406, 0.375, 0.359, 0.344, 0.312, 0.281, 0.266, 0.258, 0.250, 0.242, 0.199, 0.195, 0.170, 0.168, 0.145, ...
a(19) > 2*10^10, if it exists.

Crossrefs

The unitary version of A328859.

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; r[n_] := Length @ Union[uphi /@ (d = Select[Divisors[n], CoprimeQ[#, n/#] &])]/Length[d]; rm = 2; seq = {}; Do[r1 = r[n]; If[r1 < rm, rm = r1; AppendTo[seq, n]], {n, 1, 10^5}]; seq

A348264 a(n) is the number of iterations that n requires to reach a fixed point under the map x -> A348173(x).

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Comments

a(n) first differs from A011765(n+2) at n = 84.
The fixed points are terms of A348004, so a(n) = 0 if and only if n is a term of A348004.
Conjecture: essentially partial sums of A219977 (verified for n <= 5000).

Examples

			a(1) = 0 since 1 is in A348004.
a(2) = 1 since there is one iteration of the map x -> A348173(x) starting from 2: 2 -> 1.
a(84) = 2 since there are 2 iterations of the map x -> A348173(x) starting from 84: 84 -> 78 -> 39.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := Plus @@ DeleteDuplicates[uphi /@ Select[Divisors[n], CoprimeQ[#, n/#] &]]; a[n_] := -2 + Length@ FixedPointList[s, n]; Array[a, 100]

A359418 Unitary phi-practical (A286906) whose unitary divisors have distinct values of the unitary totient function uphi (A047994).

Original entry on oeis.org

1, 3, 15, 105, 165, 195, 255, 1155, 1785, 1995, 2145, 2415, 2805, 3045, 3135, 3255, 3315, 3705, 3795, 3885, 4305, 4485, 4515, 4785, 4845, 4935, 5115, 5565, 5655, 5865, 6045, 6105, 6195, 6405, 7035, 7095, 7215, 7395, 7455, 7665, 7755, 7905, 7995, 8295, 8385, 8715
Offset: 1

Views

Author

Amiram Eldar, Dec 31 2022

Keywords

Comments

A unitary phi-practical number k is a number k such that each number in the range 1..k is a subsum of a the multiset {uphi(d) : d | k, gcd(d, k/d) = 1}. This sequence is restricted to cases in which all the values in this multiset are distinct.
Are all the terms above 3 divisible by 5?

Crossrefs

Intersection of A286906 and A348004.

Programs

  • Mathematica
    uphi[n_] := If[n == 1, 1, (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]];
    uDivisors[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; uPhiPracticalQ[n_] := If[n < 1, False, If[n == 1, True, (lst = Sort @ Map[uphi, uDivisors[n]]; ok = True; Do[If[lst[[m]] > Sum[lst[[l]], {l, 1, m - 1}] + 1, (ok = False; Break[])], {m, 1, Length[lst]}]; ok)]];
    Select[Range[9000], UnsameQ @@ uphi /@ Divisors[#] && uPhiPracticalQ[#] &]

A361924 Numbers whose infinitary divisors have distinct values of the infinitary totient function iphi (A091732).

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 25, 27, 28, 29, 31, 33, 35, 36, 37, 39, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 83, 85, 87, 89, 91, 92, 93, 95, 97, 99, 100, 101
Offset: 1

Views

Author

Amiram Eldar, Mar 30 2023

Keywords

Comments

First differs from A003159 at n = 57.
Numbers k such that A361923(k) = A037445(k).
Since Sum_{d infinitary divisor of k} iphi(d) = k, these are numbers k such that the multiset {iphi(d) | d infinitary divisor of k} is a partition of k into distinct parts.
Includes all the odd prime powers (A061345) and all the powers of 4 (A000302).
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 6, 66, 651, 6497, 64894, 648641, 6485605, 64851632, 648506213, 6485025363, ... . Apparently, this sequence has an asymptotic density 0.6485...

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@ IntegerDigits[e, 2], 1]));
    iphi[1] = 1; iphi[n_] := Times @@ (Flatten@ (f @@@ FactorInteger[n]) - 1);
    idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]; idivs[1] = {1};
    q[n_] := Length @ Union[iphi /@ (d = idivs[n])] == Length[d]; Select[Range[100], q]
  • PARI
    iphi(n) = {my(f=factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) - 1, 1)))}
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    idivs(n) = {my(d = divisors(n), f = factor(n), idiv = []); for (k=1, #d, if(isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    is(k) = {my(d = idivs(k)); #Set(apply(x->iphi(x), d)) == #d;}

A348174 Indices k of records of low value in the ratios A348173(k)/k.

Original entry on oeis.org

1, 2, 546, 2730, 13650, 51870, 101010, 199290, 505050, 881790, 996450, 1919190, 32626230, 140100870, 654443790, 865554690
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2021

Keywords

Comments

The maximal possible value of the ratio A348173(k)/k is 1 which occurs at the terms of A348004.
The rounded values of the corresponding records are 1, 0.5, 0.478, 0.469, 0.466, 0.465, 0.4642, 0.4638, 0.4621, 0.4620, 0.460, 0.453, 0.450, 0.447, 0.446, 0.445, ...
a(17) > 1.4*10^9.

Crossrefs

The unitary version of A348159.

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; r[n_] := Plus @@ DeleteDuplicates[uphi /@ Select[Divisors[n], CoprimeQ[#, n/#] &]]/n; rm = 2; seq = {}; Do[r1 = r[n]; If[r1 < rm, rm = r1; AppendTo[seq, n]], {n, 1, 2*10^5}]; seq

A348265 a(n) is the least number k such that A348264(k) = n, or -1 if no such number exists.

Original entry on oeis.org

1, 2, 84, 1596, 410652, 9114300, 10628100, 3012406320
Offset: 0

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Examples

			n The n iterations of a(n) under the map x -> A348264(x)
- --------------------------------------------------------------------------------
0 1
1 2 -> 1
2 84 -> 78 -> 39
3 1596 -> 1428 -> 1326 -> 663
4 410652 -> 410172 -> 366996 -> 340782 -> 170391
5 9114300 -> 8871252 -> 8680848 -> 8661648 -> 8487018 -> 4243509
6 10628100 -> 10344684 -> 10309980 -> 10287900 -> 10013556 -> 9298302 -> 4649151
7 3012406320 -> 2999958360 -> 2927545572 -> 2917724340 -> 2911475700 -> 2833836348 -> 2631419466 -> 1315709733
		

Crossrefs

The unitary version of A348214.

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; sum[n_] := Plus @@ DeleteDuplicates[uphi /@ Select[Divisors[n], CoprimeQ[#, n/#] &]]; s[n_] := -2 + Length@FixedPointList[sum, n]; seq[m_, lim_] := Module[{t = Table[0, {m}], c = 0, n = 1}, While[c < m && n < lim, i = s[n] + 1; If[i <= m && t[[i]] == 0, c++; t[[i]] = n]; n++]; TakeWhile[t, # > 0 &]]; seq[5, 10^6]
Showing 1-8 of 8 results.