A348005 Positive even integers with an even number of even divisors.
4, 6, 10, 12, 14, 16, 20, 22, 24, 26, 28, 30, 34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156
Offset: 1
Keywords
Examples
The divisors of 14 are {1, 2, 7, 14}, two of them: 2 and 14 are even, hence 14 is a term. The divisors of 16 are {1, 2, 4, 8, 16}, four of them: 2, 4, 8 and 16 are even, hence 16 is another term.
Crossrefs
-------------------------------------------------------------------------
| Integers with | an even number of ... | an odd number of ... |
-------------------------------------------------------------------------
-------------------------------------------------------------------------
Programs
-
Maple
filter:= q -> irem(q, 2) = 0 and sqrt(q/2) <> floor(sqrt(q/2)) : select(filter, [$1..156]);
-
Mathematica
m = 9; 2 * Complement[Range[m^2], Range[m]^2] (* Amiram Eldar, Oct 02 2021 *)
-
PARI
isok(k) = !(k % 2) && !(sumdiv(k, d, !(d % 2)) % 2); \\ Michel Marcus, Oct 05 2021
-
Python
from math import isqrt def A348005(n): return n+(m:=isqrt(n))+int(n-m*(m+1)>=1)<<1 # Chai Wah Wu, Aug 04 2022
Formula
a(n) = 2*A000037(n).
Comments