cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A348047 a(n) = gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 8, 8, 30, 72, 32, 9, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 24, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 3, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32
Offset: 1

Views

Author

Antti Karttunen, Oct 21 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 196 = 4*49, where a(196) = 3, although a(4) = 1 and a(49) = 4.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := GCD[Times @@ f @@@ FactorInteger[n], DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Oct 21 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348047(n) = gcd(sigma(n), A003959(n));

Formula

a(n) = gcd(A000203(n), A003959(n)).
a(n) = gcd(A000203(n), A348029(n)) = gcd(A003959(n), A348029(n)).
a(n) = A000203(n)/ A348048(n) = A003959(n) / A348049(n).

A348049 a(n) = A003959(n) / gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 9, 1, 1, 1, 81, 1, 16, 1, 9, 1, 1, 1, 9, 36, 1, 8, 9, 1, 1, 1, 27, 1, 1, 1, 144, 1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 81, 64, 36, 1, 9, 1, 8, 1, 9, 1, 1, 1, 9, 1, 1, 16, 729, 1, 1, 1, 9, 1, 1, 1, 144, 1, 1, 36, 9, 1, 1, 1, 81, 256, 1, 1, 9, 1, 1, 1, 9, 1, 16, 1, 9, 1, 1, 1, 27, 1, 64
Offset: 1

Views

Author

Antti Karttunen, Oct 21 2021

Keywords

Comments

Not multiplicative. For example, a(196) = 192 != a(4) * a(49).

Crossrefs

Cf. A000203, A003959, A005117 (positions of 1's), A348029, A348047, A348048.
Cf. also A344697.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := (m = Times @@ f @@@ FactorInteger[n]) / GCD[m, DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Oct 21 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348049(n) = { my(u=A003959(n)); (u/gcd(u, sigma(n))); };

Formula

a(n) = A003959(n) / A348047(n) = A003959(n) / gcd(A000203(n), A003959(n)).

A348504 a(n) = sigma(n) / gcd(sigma(n), usigma(n)), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 5, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 5, 31, 1, 10, 7, 1, 1, 1, 21, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 10, 1, 5, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 13, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 5, 1, 13, 1, 7, 1, 1, 1, 21, 1, 57
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 72 = 8*9, where a(72) = 13 != 5*13 = a(8) * a(9).

Crossrefs

Cf. A000203, A005117 (positions of ones), A034448, A048146, A348503, A348505.
Differs from A344696 for the first time at n=72, where a(72) = 13, while A344696(72) = 65. Cf. also A348048.

Programs

  • Mathematica
    f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := (sigma = Times @@ f2 @@@ (fct = FactorInteger[n])) / GCD[sigma, Times @@ f1 @@@ fct]; Array[a, 100] (* Amiram Eldar, Oct 29 2021 *)
  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A348504(n) = { my(u=sigma(n)); (u/gcd(u, A034448(n))); };

Formula

a(n) = A000203(n) / A348503(n) = A000203(n) / gcd(A000203(n), A034448(n)).

A348985 Numerator of ratio sigma(n) / A325973(n), where A325973 is the arithmetic mean of {sum of squarefree divisors} and {sum of unitary divisors}.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 5, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 5, 31, 1, 5, 7, 1, 1, 1, 7, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 5, 1, 5, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 65, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 5, 1, 13, 1, 7, 1, 1, 1, 7, 1, 57, 13
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = 70 <> 35 = 7*5 = a(4)*(27).

Crossrefs

Differs from A348048 for the first time at n=108, where a(108) = 70, while A348048(108) = 35.
Cf. also A348948.

Programs

  • Mathematica
    f1[p_, e_] := p + 1; f2[p_, e_] := p^e + 1; s[1] = 1; s[n_] := (Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f)/2; a[n_] := Numerator[DivisorSigma[1, n]/s[n]]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A325973(n) = (1/2)*sumdiv(n, d, d*(issquarefree(d) + (1==gcd(d, n/d))));
    A348985(n) = { my(s=sigma(n)); (s/gcd(s, A325973(n))); };

Formula

a(n) = A000203(n) / A348984(n) = sigma(n) / gcd(sigma(n), A325973(n)).
Showing 1-4 of 4 results.