cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348054 Positive integers that are the product of two integers ending with 7.

Original entry on oeis.org

49, 119, 189, 259, 289, 329, 399, 459, 469, 539, 609, 629, 679, 729, 749, 799, 819, 889, 959, 969, 999, 1029, 1099, 1139, 1169, 1239, 1269, 1309, 1369, 1379, 1449, 1479, 1519, 1539, 1589, 1649, 1659, 1729, 1739, 1799, 1809, 1819, 1869, 1939, 1989, 2009, 2079, 2109
Offset: 1

Views

Author

Stefano Spezia, Sep 26 2021

Keywords

Examples

			49 = 7*7, 119 = 7*17, 189 = 7*27, 259 = 7*37, 289 = 17*17, 329 = 7*47, 399 = 7*57, ...
		

Crossrefs

Cf. A017377 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346950 (ending with 3), A347253 (ending with 4), A348055.

Programs

  • Mathematica
    a={}; For[n=0, n<=210, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+7]==0 && Mod[(10*n+9)/(10*k+7), 10]==7 && 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(2110)) # Michael S. Branicky, Sep 26 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.