A348153 Primes for which there is no pair (k,q) with k a positive integer and q another prime, such that p=q*(2k+1)-2k.
2, 3, 5, 17, 41, 73, 89, 97, 137, 193, 233, 257, 313, 353, 449, 457, 569, 641, 809, 857, 929, 1033, 1049, 1097, 1129, 1153, 1193, 1217, 1289, 1409, 1433, 1601, 1609, 1697, 1753, 1889, 1913, 1993, 2081, 2137, 2153, 2273, 2297, 2393, 2473, 2617, 2633, 2657, 2689, 2713, 2753, 2777, 2969
Offset: 1
Keywords
Programs
-
Mathematica
lim = 2000; p = 2; listc = {}; listp = {}; While[p < lim, n = 1; While[n <= (p - 3)/4, If[PrimeQ[(p + 2 n)/(2 n + 1)], n = 2*p, n = n + 1]]; If[n == 2*p, AppendTo[listc, p]]; AppendTo[listp, p]; p = NextPrime[p]]; Complement[listp, listc]
-
PARI
isok(p) = {if (isprime(p), for (k=1, (p-3)/4, my(q = (p+2*k)/(2*k+1)); if ((denominator(q)==1) && isprime(q), return(0));); return (1););} \\ Michel Marcus, Oct 07 2021
Extensions
More terms from Michel Marcus, Oct 04 2021
Comments