A349696 Smallest number in a set of three consecutive triangular numbers each with three prime factors (counted with multiplicity).
153, 406, 861, 39621, 2166321, 3924201, 11146281, 14804961, 19198306, 73951041, 83417986, 97951006, 209643526, 310415986, 522339681, 526225461, 583333246, 611153241, 801460666, 1601581906, 2520251506, 2690954841, 4455349606, 6681853401, 9895642221, 13878029901
Offset: 1
Keywords
Examples
a(1) = 153 because 153 is the smallest number in the first set of three consecutive triangular numbers with three prime factors (counted with multiplicity), i.e., (153 = 3*3*17, 171 = 3*3*19, 190 = 2*5*19).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Shyam Sunder Gupta, Beauty of Number 153, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 15, 399-410.
Programs
-
Maple
R:= NULL: count:= 0: for i from 1 while count < 100 do k:= 12*i+4; if isprime(k+1) and isprime((k+2)/6) and isprime(k+3) then if isprime(k/4) then R:= R, k*(k+1)/2; count:= count+1; fi; if isprime((k+4)/4) then R:= R, (k+1)*(k+2)/2; count:= count+1; fi; fi; od: R; # Robert Israel, Mar 11 2025
-
Mathematica
t[n_] := n*(n + 1)/2; q[n_] := PrimeOmega[n] == 3; Select[Partition[t /@ Range[10^5], 3, 1], AllTrue[#, q] &][[;; , 1]] (* Amiram Eldar, Nov 25 2021 *) (#(#+1))/2&/@SequencePosition[PrimeOmega[Accumulate[Range[170000]]],{3,3,3}][[;;,1]] (* Harvey P. Dale, Oct 20 2023 *)
Formula
Extensions
Definition clarified by Harvey P. Dale, Oct 20 2023
Comments