A348211 Triangle read by rows giving coefficients of polynomials arising as numerators of certain Hilbert series.
1, 1, 1, 1, 3, 1, 1, 11, 11, 1, 1, 31, 90, 31, 1, 1, 85, 554, 554, 85, 1, 1, 225, 2997, 6559, 2997, 225, 1, 1, 595, 15049, 62755, 62755, 15049, 595, 1, 1, 1576, 72496, 527911, 985758, 527911, 72496, 1576, 1, 1, 4203, 341166, 4094762, 12956604, 12956604, 4094762, 341166, 4203, 1
Offset: 3
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 11, 11, 1; 1, 31, 90, 31, 1; 1, 85, 554, 554, 85, 1; 1, 225, 2997, 6559, 2997, 225, 1; 1, 595, 15049, 62755, 62755, 15049, 595, 1; 1, 1576, 72496, 527911, 985758, 527911, 72496, 1576, 1;
Links
- G. C. Greubel, Rows n = 3..53 of the triangle, flattened
- D.-N. Verma, Towards Classifying Finite Point-Set Configurations, 1997, Unpublished. [Scanned copy of annotated version of preprint given to me by the author in 1997. - _N. J. A. Sloane_, Oct 04 2021]
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 50); A:= func< n, k | (&+[(-1)^(j+1)*Binomial(n, j)*Binomial((n-2*j)*k+n-j-2, n-3)/2 : j in [0..Floor((n-1)/2)]]) >; // A=A348210 p:= func< n,x | (1-x)^(n-2)*(&+[A(n,k)*x^k: k in [0..n]]) >; A348211:= func< n,k | Coefficient(R!( p(n,x) ), k) >; [A348211(n,k): k in [0..n-3], n in [3..15]]; // G. C. Greubel, Feb 28 2024 -
Maple
read("transforms"): A348211_row := proc(n) local x,b,opoly ; opoly := n-2 ; [seq(A348210(n,k),k=0..opoly-1)] ; b := BINOMIALi(%) ; add( op(i,b)*x^(i-1)*(1-x)^(opoly-i),i=1..nops(b)) ; seq( coeff(%,x,i),i=0..opoly-1) ; end proc: for n from 3 to 12 do print(A348211_row(n)) ; end do: # R. J. Mathar, Oct 10 2021
-
Mathematica
A348210[n_, k_] := (-1/2)*Sum[(-1)^j*Binomial[n, j]* Binomial[(n-2*j)*k+n-j-2, n-3], {j, 0, Floor[(n-1)/2]}]; row[n_] := Switch[n, 3, {1}, 4, {1, 1}, _, FindGeneratingFunction[Table[A348210[n, k], {k, 0, n-2}], x] // Numerator // CoefficientList[#, x]& // Abs]; Table[row[n], {n, 3, 12}] // Flatten (* Jean-François Alcover, Apr 23 2023 *)
-
SageMath
def A(n, k): return sum( (-1)^(j+1)*binomial(n, j)*binomial((n-2*j)*k+n-j-2, n-3) for j in range(1+(n-1)//2) )/2 # A = A348210 def p(n,x): return (1-x)^(n-2)*sum( A(n,k)*x^k for k in range(n+1) ) def A348211(n,k): return ( p(n,x) ).series(x, n+1).list()[k] flatten([[A348211(n,k) for k in range(n-2)] for n in range(3,17)]) # G. C. Greubel, Feb 28 2024
Formula
Sum_{k=0..n-3} T(n, k) = A012249(n-2) (row sums).
From G. C. Greubel, Feb 28 2024: (Start)
T(n, k) = [x^k]( (1-x)^(n-2) * Sum_{k=0..n-3} A(n,k)*x^k ), where A(n,k) is the array of A348210.
T(n, n-k) = T(n, k). (End)
Comments