cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348211 Triangle read by rows giving coefficients of polynomials arising as numerators of certain Hilbert series.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 11, 11, 1, 1, 31, 90, 31, 1, 1, 85, 554, 554, 85, 1, 1, 225, 2997, 6559, 2997, 225, 1, 1, 595, 15049, 62755, 62755, 15049, 595, 1, 1, 1576, 72496, 527911, 985758, 527911, 72496, 1576, 1, 1, 4203, 341166, 4094762, 12956604, 12956604, 4094762, 341166, 4203, 1
Offset: 3

Views

Author

R. J. Mathar, Oct 07 2021

Keywords

Comments

This corrects 544 -> 554 in row 8 of A013561.
Write the g.f. of row n of A348210 as a rational polynomial nu(x)/(1-x)^(n-2). The triangle contains the coefficients [x^k] nu(x) in row n.

Examples

			Triangle begins:
  1;
  1,    1;
  1,    3,     1;
  1,   11,    11,      1;
  1,   31,    90,     31,      1;
  1,   85,   554,    554,     85,      1;
  1,  225,  2997,   6559,   2997,    225,     1;
  1,  595, 15049,  62755,  62755,  15049,   595,    1;
  1, 1576, 72496, 527911, 985758, 527911, 72496, 1576,   1;
		

Crossrefs

Cf. A012249 (row sums), A013561, A013630.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    A:= func< n, k | (&+[(-1)^(j+1)*Binomial(n, j)*Binomial((n-2*j)*k+n-j-2, n-3)/2 : j in [0..Floor((n-1)/2)]]) >; // A=A348210
    p:= func< n,x | (1-x)^(n-2)*(&+[A(n,k)*x^k: k in [0..n]]) >;
    A348211:= func< n,k | Coefficient(R!( p(n,x) ), k) >;
    [A348211(n,k): k in [0..n-3], n in [3..15]]; // G. C. Greubel, Feb 28 2024
    
  • Maple
    read("transforms"):
    A348211_row := proc(n)
        local x,b,opoly ;
        opoly := n-2 ;
        [seq(A348210(n,k),k=0..opoly-1)] ;
        b := BINOMIALi(%) ;
        add( op(i,b)*x^(i-1)*(1-x)^(opoly-i),i=1..nops(b)) ;
        seq( coeff(%,x,i),i=0..opoly-1) ;
    end proc:
    for n from 3 to 12 do
        print(A348211_row(n)) ;
    end do: # R. J. Mathar, Oct 10 2021
  • Mathematica
    A348210[n_, k_] := (-1/2)*Sum[(-1)^j*Binomial[n, j]* Binomial[(n-2*j)*k+n-j-2, n-3], {j, 0, Floor[(n-1)/2]}];
    row[n_] := Switch[n, 3, {1}, 4, {1, 1}, _, FindGeneratingFunction[Table[A348210[n, k], {k, 0, n-2}], x] // Numerator // CoefficientList[#, x]& // Abs];
    Table[row[n], {n, 3, 12}] // Flatten (* Jean-François Alcover, Apr 23 2023 *)
  • SageMath
    def A(n, k): return sum( (-1)^(j+1)*binomial(n, j)*binomial((n-2*j)*k+n-j-2, n-3) for j in range(1+(n-1)//2) )/2 # A = A348210
    def p(n,x): return (1-x)^(n-2)*sum( A(n,k)*x^k for k in range(n+1) )
    def A348211(n,k): return ( p(n,x) ).series(x, n+1).list()[k]
    flatten([[A348211(n,k) for k in range(n-2)] for n in range(3,17)]) # G. C. Greubel, Feb 28 2024

Formula

Sum_{k=0..n-3} T(n, k) = A012249(n-2) (row sums).
From G. C. Greubel, Feb 28 2024: (Start)
T(n, k) = [x^k]( (1-x)^(n-2) * Sum_{k=0..n-3} A(n,k)*x^k ), where A(n,k) is the array of A348210.
T(n, n-k) = T(n, k). (End)