A348289 a(n) = Sum_{k=0..floor(n/8)} binomial(n-4*k,4*k).
1, 1, 1, 1, 1, 1, 1, 1, 2, 6, 16, 36, 71, 127, 211, 331, 497, 725, 1047, 1531, 2316, 3668, 6064, 10312, 17717, 30309, 51165, 84893, 138417, 222329, 353285, 558253, 881918, 1399274, 2236480, 3604588, 5853067, 9553715, 15631615, 25570103, 41734433, 67889133, 110035211, 177778263
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1,0,0,0,1).
Programs
-
PARI
a(n) = sum(k=0, n\8, binomial(n-4*k, 4*k));
-
PARI
my(N=66, x='x+O('x^N)); Vec((1-x)^3/((1-x)^4-x^8))
Formula
G.f.: (1-x)^3/((1-x)^4 - x^8).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-8).