cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A348290 a(n) = Sum_{k=0..floor(n/10)} binomial(n-5*k,5*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 253, 463, 793, 1288, 2003, 3005, 4380, 6255, 8855, 12630, 18508, 28358, 45783, 77408, 134883, 237888, 418513, 727513, 1243163, 2083888, 3426771, 5535911, 8808206, 13850761, 21615771, 33638409, 52455339, 82332229, 130506914, 209273284
Offset: 0

Views

Author

Seiichi Manyama, Oct 10 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\10, binomial(n-5*k, 5*k));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec((1-x)^4/((1-x)^5-x^10))

Formula

G.f.: (1-x)^4/((1-x)^5 - x^10).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + a(n-10).

A348309 a(n) = Sum_{k=0..floor(n/8)} (-1)^k * binomial(n-4*k,4*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, -4, -14, -34, -69, -125, -209, -329, -493, -705, -955, -1199, -1324, -1092, -56, 2560, 8025, 18313, 36353, 66273, 113525, 184653, 286257, 422377, 589028, 763912, 888378, 837502, 372835, -928725, -3776537, -9302337, -19226889, -36034869, -63099331, -104630831, -165212760
Offset: 0

Views

Author

Seiichi Manyama, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -6, 4, -1, 0, 0, 0, -1}, {1, 1, 1, 1, 1, 1, 1, 1}, 45] (* Amiram Eldar, Oct 11 2021 *)
  • PARI
    a(n) = sum(k=0, n\8, (-1)^k*binomial(n-4*k, 4*k));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec((1-x)^3/((1-x)^4+x^8))

Formula

G.f.: (1-x)^3/((1-x)^4 + x^8).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) - a(n-8).

A370722 a(n) = Sum_{k=0..floor(n/7)} binomial(n-4*k,3*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 57, 85, 122, 173, 249, 371, 575, 918, 1485, 2398, 3830, 6030, 9369, 14422, 22107, 33909, 52226, 80888, 125925, 196706, 307653, 480873, 750275, 1168085, 1815191, 2817518, 4371772, 6785606, 10539893, 16384908, 25488736
Offset: 0

Views

Author

Seiichi Manyama, Feb 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1, 0, 0, 0, 1}, Table[1, 7], 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n\7, binomial(n-4*k, 3*k));
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec((1-x)^2/((1-x)^3-x^7))

Formula

G.f.: (1-x)^2/((1-x)^3 - x^7).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-7).
Showing 1-3 of 3 results.